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ABSTRACT

With the advent of machine learning and cloud, many applications working with
sensitive data are moving their operations to the cloud based Graphics Processing
Unit (GPU) to leverage high parallel computing power. The GPU device driver
handles and submits the sensitive data to the GPU. It executes in supervisor
mode and hence, must be fully trusted. GPU vendors need to ensure proper
validation of their GPU device drivers before release. In recent years, coverage-
guided fuzzing has become a popular method for automating code validation at
a large-scale. Coverage achieved is one of the important indicators of evaluating
a coverage-guided fuzzer. While fuzzing a device driver, the interference of the
non-deterministic kernel events and the underlying hardware’s state conditions
in the feedback received can impact the coverage achieved by a fuzzer.

In this thesis, we aim to find a suitable large-scale fuzzing solution that
overcomes the challenges of fuzzing i915 graphics driver and can be deployed for
large-scale driver validation. The ig15 driver communicates with the latest Intel
integrated GFX chipsets. Out of the possible fuzzing options, we explore the
different Intel device virtualization configurations to fuzz the driver. To choose a
suitable fuzzer for our solution, we perform a comparative analysis between the
state-of-the-art coverage-guided kernel fuzzer, Syzkaller, and an alternative
research proof-of-concept, Kernel AFL (kAFL), by performing fuzzing of the ig15
GFX driver with an actual hardware backend.

We first provide a qualitative analysis of the different fuzzing solutions based
on defined criteria. For this analysis we create a clever KAFL harness similar to
Syzkaller logic. We find that this extra harness intelligence can produce
comparable results to Syzkaller with the ig15 graphics driver. We find similar
numbers of edges covered by both the fuzzers but the coverages are not
completely comparable. We present a case study that confirms that the coverages
can be considered similar. Hence, we find that kAFL can be a good alternative to
Syzkaller for graphics driver fuzzing if the user can provide a clever harness.
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INTRODUCTION

1.1 MOTIVATION

Several classes of vulnerabilities like use-after-free vulnerabilities, buffer overflow
and memory corruption are known as prevalent threats for applications in the
user-space and the kernel-space [10]. Kernel-space vulnerabilities can lead to
privilege escalation or kernel rootkits to gain persistence, and therefore, it is
important to keep the kernel-code secure. Many Operating System (OS) vendors
have deployed security mechanisms to prevent attacks at user-space and kernel-
space. Even then the vulnerabilities in the kernel-space can be difficult to spot.

Device Drivers make up more than 60% of the kernel source code [52]. As most
of the drivers are executing in the supervisor mode, they need to be trustworthy.
But due to the monolithic architecture of Linux, the user-space applications are
forced to trust all the drivers. Therefore, any severe vulnerability in their code
can lead to the compromise of the entire system, and hence, the developers need
to minimize the vulnerabilities. Google estimates that 85% of the kernel bugs are
found in the vendor drivers [47].

Graphics Processing Units (GPUs) have been increasingly gaining popularity in
the field of General-Purpose computing on Graphics Processing Units (GPGPU)
programming. In GPGPU, the highly parallel nature of the GPUs is leveraged.
This massive parallelism is achieved by exploiting thousands of cores, and GPGPU
uses this in applications like financial, encryption, big data, and bitcoin mining
[33]. GPUs are also made available by cloud computing service providers in
a virtualized environment for customers who do not want to buy expensive
hardware. This further lead to GPUs being used for cloud gaming, where users
could play GPU-intensive games in a virtualized environment. Even though
applications are running sensitive data through the GPU, not much effort has
been made towards securing the graphics subsystem. Hence, there is a need to
have proper validation of the components that handle the sensitive data to and
from the GPU.

One interesting problem is validating the OS device drivers as most of them
are running with supervisor privileges and are interacting with several untrusted
user-space applications. A popular method of for software validation is an
automated testing process called fuzzing. Fuzzing the kernel components has
often been difficult as the non-determinism of the kernel code and close
interactions with stateful hardware poses a problem in getting useful coverage
information necessary for the established coverage-guided fuzzers.



INTRODUCTION

1.2 RESEARCH CONTRIBUTION

In this thesis we investigate the challenges to validate and test Intel’s i915 graphics
driver using coverage-guided fuzzing. To achieve this we aim to overcome the
following challenges:

1. Most of the kernel fuzzers available use a virtualized environment for
fuzzing the target. The physical GPU must first be attached to the virtualized
guest to load the driver.

2. The stateful GPU and kernel add non-determinism to the execution of fuzz
inputs against the ig15 driver. This can lead to system crashes and ineffective
coverage.

In this thesis we aim to find a suitable fuzzing solution that overcomes the
above challenges. We first explore the different possible options for the fuzzers to
access the Intel GPU such that the ig15 driver can be loaded for testing. Next, we
investigate the different fuzzing options with two prominent coverage-guided
kernel fuzzers, Syzkaller and Kernel AFL (kAFL). Syzkaller is a state-of-the-art
coverage-guided kernel fuzzer that is used by the industry for fuzzing the Linux
Kernel [15]. KAFL is an alternative research proof-of-concept based on the novel
fuzzer American Fuzzy Lop (AFL) [43]. We aim to examine whether Syzkaller
and kAFL can deal with the above challenges and effectively fuzz the ig15 driver.
To summarize, this thesis contributes the following research:

I. What are the different options for fuzzing the i915 GFX driver for large-scale
driver validation?

In this thesis, we aim to explore the different options and define the main
research questions that we wish to evaluate for these options in Chapter 3.
We aim to answer these questions in Chapter 4 and Chapter 5.

II. Present a quantitative analysis of Syzkaller and kAFL with the Intel i915
GEX driver as the target.

In this thesis, we introduce the fuzzers and define the main research
questions that we want to evaluate for the two fuzzers in Chapter 3. We
aim to answer these questions in Chapter 4 and Chapter 5.

1.3 STRUCTURE OF THESIS

The following chapters have been structured as follows:

¢ Chapter 2 provides a brief background knowledge that is required to
understand the motivation behind the thesis and comprehend the
upcoming chapters.



1.3 STRUCTURE OF THESIS

Chapter 3 gives an overview of the challenges in fuzzing the ig15 driver, the
different fuzzing options for the ig15 driver, the technologies and concepts
used during this thesis. Defines the research questions for this thesis.

Chapter 4 describes the evaluation platform and the integration of the
fuzzing options with Syzkaller and kAFL. We explain the setup that is used
as a benchmark for the evaluation of the fuzzers.

Chapter 5 presents the experiments conducted and the comparative analysis
between the two fuzzers. Answers the research questions that were defined
in Chapter 3.

Chapter 6 presents the conclusion and future work.






BACKGROUND

2.1 THE LINUX KERNEL

The Linux Kernel is an important part of many open and closed source projects,
including distributions of GNU/Linux operating system. It is for the most part
monolithic in nature, running in the kernel-space. That implies that all
functionalities like device drivers, dispatcher, scheduling, virtual memory, all
inter-process communication,etc run in the kernel-space, as shown in Figure 2.1.

When a user-space program wishes to use any underlying hardware resource,
it needs to issue such a request to the operating system. The Linux kernel assesses
this request and communicates with the required hardware on behalf of the user-
space program. This enforces the hardware protection of system resources [11].
To implement this, modern Central Processing Unit (CPU) architectures provide
two modes to the CPU to operate in: a non-privileged user mode and a privileged
kernel mode (also referred to as supervisor mode) and corresponding to these
modes, the virtual memory is marked as user-space or kernel-space.

The OS wishes to ensure that no program is able to exploit another and this is
achieved by providing each program with it’s own user-space, while the kernel-
space is shared across all the programs. In general, the program running in the
user space has no rights to read, write, modify or execute the data in the memory
marked as the kernel-space. On the other hand, kernel running in the kernel
mode from kernel-space has the privileges to perform all those actions on the
data that resides in user-space and kernel-space memory. Therefore, we see that
these two are separate abstraction layers to provide code isolation and security.

USER
MODE APPLICATIONS

$

VFS, System Call

IPC, File System
KERNEL
MODE

Scheduler, Virtual Memory

Device Drivers, Dispatcher

Figure 2.1: Linux Kernel Architecture




BACKGROUND

2.1.1  System Call Interface

OS provides an extra layer of kernel between the user programs and the hardware
for the following reasons:

1. Asstated in 2.1, the system security is increased due to the kernel assessment
of request before execution

2. User programs are made portable to run on every kernel that provides the
same interface

In Unix-like systems, this interface is known as system calls that help the user-
programs communicate the requests for a privileged operation to the kernel.
The system calls should not be confused with the Application Programmer
Interface (API). An APl is a function definition that describes to another program
how to obtain a service that your program offers whereas a system call is an
explicit request for privileged operation using software interrupts. Every system
call has a wrapper routine called system call handler that specifies the API for the
user-space programs, as shown in Figure 2.2. On the other hand, every API does
not correspond to a system call. A detailed difference can be found in [11].

USER SPACE KERNEL SPACE

|+ hello0{ .~ SYSCALL){
el - vssa

}

sys_hello() {

- sYSEXIT T 1

sys_hello)

System Call Wrapper Routine System call System Call
Invocation handler Routine

Figure 2.2: Invoking System Calls

There are many possibilities where a user-mode program wants to access
the underlying system resources, a privileged operation. For this, the program
"signals" the kernel using system call interface that it wants to execute a privileged
operation. Once this request is received by the kernel it performs check for sanity,
input validation and security [4]. On passing, the CPU privilege mode is changed
from user mode to kernel mode and the program starts executing its privileged
kernel procedure. When the requested procedure is finished executing, it forces
the CPU to transition to the user mode.
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"Syscall" instruction is used in x86_64 system to make a system call. The user
program passes the parameters for the system call by: 1) pushing and popping
off the program stack 2) using the registers in the order RDI, RSI, RDX, R1o0, RS,
and Rg [4] 3) through a data block and the block address is passed to registers
as the parameter. The last method is used when there are more parameters than
registers. Every system call is identified using an integer which is stored in RAX.
Figure 2.3 shows the five types of system calls that are presented by the interface.

File Management
Information
Maintenance Communication

Device
Process Control

Figure 2.3: Types of System Calls

2.1.2  Security

There are several types of vulnerabilities like use-after-free, memory corruption
and race conditions that are threats for programs that run in both user-space
and kernel-space [41]. Kernel vulnerabilities can be critical because due to the
monolithic architecture of the kernel, number of critical user-space applications
depend on the kernel, like guest machines or task manager. Therefore, we need
kernel security to ensure that the kernel is trustworthy.

Security is a policy that should be handled by only the privileged levels,
therefore, the security checks in the OS are enforced by the kernel. The system
becomes vulnerable if there are security vulnerabilities in the kernel. In a privilege
escalation attack, the attacker can exploit the kernel vulnerabilities to upgrade
the privilege level of a process [53]. If the attacker is successful with such attack,
he can gain administrative privileges and compromise the entire system. With
such privileges, the attacker can steer clear of access control and gain read /write
permissions for the entire system data. Hence, the privilege escalation attack
constitutes a significant threat to the system security and should be prevented at
all costs.
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2.1.3 Device Drivers

Device Drivers are like "black-boxes" as they are an abstraction to the workings of
a hardware by presenting a well-defined internal programming interface for the
user-space applications to communicate with the device. The Portable Operating
System Interface (POSIX) Standard specifies the communication between the
user-space applications and the device drivers. User-space applications use
standardized system calls that are independent of a specific driver for hardware
operations. The device driver then maps these calls to device-specific operations
that are run on actual hardware. These device drivers can be built independent
of the kernel and can be "loaded" at runtime when needed. These are known as
loadable kernel modules.

The device itself is presented to the user-space as a special device file on the disk.
This echoes the motto of the Linux kernel that "“Everything is a file"’. The user-
space application can obtain a handle to the file using the open() system call and
then interact with the device file in multitude of ways. But the traditional system
calls cannot fulfill all the requirements of the different device drivers present
out there. For example, how can the user-space application configure memory
used by a GPU. The POSIX Standard describes an ioctl interface that can help
device drivers model the functionalities that are typically not possible with the
traditional system calls. The C definition of ioctl is as follows: int ioctl(int
fd, unsigned long request, ...);. It takes in an open file descriptor as the
tirst argument, a device-dependent command identifier as the second argument
and the third is an untyped pointer to the memory. The type and quantity of the
third argument is dependent on the driver used and the command identifier.

Privileged code can raise the user-mode privileges to kernel-mode privileges
and majority of such privileged code paths exist in the device drivers. The current
Linux kernel source tree has over 17 million line of code and device drivers make
up the biggest part of the code [35].

As the device drivers are accessible via the ioctl interface, the above
definition of the interface presents possible vulnerabilities. As the third argument
is dependent on the type of command identifier, this means that the user must be
aware of how the functionalities implemented in the driver and what type of
data do they take as input. Parsing any incorrect data can expose critical
vulnerabilities in the kernel-space.

2.2 LINUX GRAPHICS STACK

This section provides a brief introduction to the Linux Graphics Stack to provide
a clear vision as to where the ig15 driver lies, which components it interacts with
and why it might be a lucrative target for an attacker.

To understand the modern graphics stack, it is necessary to have an overview
of how it adapted to new technologies over the years.
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Modern graphics stack has evolved over the years from the time when X
server was the only program that could directly communicate to the underlying
graphics hardware and perform rendering on the framebuffer. The framebuffer is
a bitmap in the system memory that holds the pixel data representing a complete
display frame. User-space applications could interact with the graphics hardware
through the X server, shown in Figure 2.4. X server exposed a library, XIib, that
was used by the applications to send rendering commands and after receiving
them, the X server would convert them to hardware-specific commands. Hence,
the commands sent were hardware-independent and the conversion was done
by drivers that were specifically written as modules for the X server. These user-
space drivers provided 2D graphics support in the architecture and were called
Device Dependent X (DDX).

User-space Application

! H
! H
| (- !
T l Device Independent X (DIX) :
! i
' 1
1 i
! 1
! ]
| i
! [ Device Dependent X (DDX) ] i

]
| :
! i
| i
[ Kernel ]
[ CPU with Main Memory ]
[ GPU with Graphics Memory ]

Figure 2.4: X Architecture [50]

With the arrival of the X windowing system, 3D graphics were introduced
and changed the realm of graphics significantly. X Window system is a type
of Graphical User Interface (GUI), where each window needs to handle user

interactions, inter-window events and other user-space system-dependent events.

The 3D-accelerated graphics hardware came with their own memory inside which
a command queue was used to manage the commands directed towards the GPU
[49]. The buffers and free space within the memory was required to be managed
as well.

Open Graphics Library (OpenGL) is used to implement 3D graphics and it
exposes an API via a library called /ibGL. To take advantage of the sophisticated
3D hardware, libGL needed to be hardware-accelerated. As only X server could
talk to the graphics hardware directly, OpenGL was implemented such that all
the commands would pass via X server, which would then convert them into
GPU-specific commands [50]. This is known as Indirect Rendering. A Framebuffer
application was used to manage the graphics memory. Initially, 3D hardware

11



12

BACKGROUND

had a clear separation from 2D hardware, so having separate drivers made sense.
Utah-GLX was the first 3D hardware-independent, user-space driver, shown in
Figure 2.5. This model had a few drawbacks. First, due to the potential conflicts
between all the drivers during context switches, drivers were supposed to take
a snapshot of their state before the switch. This was a difficult task for the
developers. Second, the unprivileged user-space applications could access the
graphics hardware. This was a growing concern for the Linux Security community.
It was concluded that this was not an efficient solution for the intensive 3D
applications. There was a need to access the graphics hardware directly and
securely to get better performance. As there was no way for multiple applications
to access the hardware directly without collisions, it lead to a big architectural
change in the graphics stack.

T OpenGL | I
[ X11 Application ] [ Application ] Framebuffer Application

GLX

[ XFree86 ]

[ 2D Driver ] [ Utah GLX Driver ]

User Space

[ Kemnel [ FB Driver ]]

Kernel Space

{ Hardware

[ CPU with Main Memory ]

[ GPU with Graphics Memory ]

Figure 2.5: Earlier Graphis Stack using Utah-GLX [50]

Direct Rendering Infrastructure (DRI) is a framework that was initially
developed to allow the user-space applications direct access to the graphics
hardware alongside the X server for efficient 3D rendering. To implement DRI,
changes were made to X server, kernel and various client libraries [50].

DRI framework comprises of 3 components and the term DRI refers to the
entire framework, it is frequently used for the component that interacts with the
user-space applications. The 3 components have distinct characteristics and are
as follows:

1. DRI client: This component handles the user-space application commands
for direct rendering. The application requires a hardware-specific driver to
convert the commands to device-specific commands. DRI provides drivers in
the form of shared libraries that the application is linked to dynamically[24].
Under this the libGL library of OpenGL is hardware accelerated to get the
maximum advantage of the 3D graphics hardware. This library can be a
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product form a third party company (Mesa 3D) or the hardware vendor
itself. In this component, no root privileges are involved and is part of the
user-space side of the architecture. This helped remove some of the security
concerns.

. X server: The X server exposed the X11 protocol for user-space applications
to access the 2D driver DDX for the windowing system. It exposes another
protocol called GLX that can be used by the applications for indirect
rendering to achieve 3D hardware acceleration. This extension can be
helpful for remote applications.

. Direct Rendering Infrastructure (DRM): The aim of this component is to
allow direct access of 3D hardware for multiple applications in a
synchronized manner. DRM provides the user-space with system calls to
send commands which it converts to the hardware-specific commands to
carry out the 3D rendering action. This conversion is GPU-specific and as
there are many GPU vendors, DRM can contain different drivers. For Intel

Integrated Graphics Processing Unit (iGPU), Intel provides ig15 GFX driver.

Other tasks involve ensuring that 3D resources like framebuffer, memory or
command queue do not collide with each other for access. DRM also
enforces security policies that ensure that the user-space applications do
not access hardware beyond the 3D rendering action [24]. To carry out
these tasks successfully, DRM runs with root privileges in the kernel-space
and forms the kernel side of the architecture.

GPU is exposed to the user-space as a device file under /dev filesystem.

Multiple GPUs can be detected and can be found as /dev/dri/cardN (N is a
sequence number) or /dev/dri/renderD128 which are used by applications
to communicate with the GPU. The DRM API is presented to the user-space
with a library called libdrm that provides a wrapper to the DRM API. This

prevents the kernel-space API to be directly exposed to the user-space[26].

To interact with the GPU, the applications need to open the device file and
use different ioctls to communicate with DRM.

In the old graphics stack, shown in Figure 2.6 the 2D command stream
still was passing through the 2D driver separately which meant that the X
server required higher privileges to directly communicate with the graphics
hardware. This has lead to the current stack where the X server does not
need any root privileges and different drivers do not need to communicate
with the single piece of hardware.

13
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L OpenGL | N I
[ X11 Application ] [ Application ] Framebuffer Application

GLX
[ X Server ]
DRI
[ 2D Driver ] [ OpenGL DRI Driver ]

User Space

DRM - FB Driver '

Kernel Space

Hardware

[ CPU with Main Memory ]

[ GPU with Graphics Memory ]

Figure 2.6: Old Graphics Stack [50]

. OpenGL L
[ X11 Application ] [ Application ] Framebuffer Application

GLX
[ X Server ]
AIGLX DRI
[ 2D Driver ] [ OpenGL DRI Driver ]
User Space

DRM Core

@ DRM Driver

Kernel Space

Hardware

[ CPU with Main Memory ]

[ GPU with Graphics Memory ]

Figure 2.7: Current Graphics Stack [50]

The new DRM architecture shown in Figure 2.7 is mainly comprised of two
components:

a) DRM core: DRM core can be called as the frozen part of the DRM
module. This implies that it is a generic part of the module that exposes
the hardware-independent part of the DRM API. The core acts as a
kernel abstraction layer by allowing any DRM driver can register with
the core.

b) DRM driver: The DRM drivers expose all the hardware-dependent
part of the DRM API. As DRM drivers can be different in different
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systems depending on the GPUs used, they can be called as the hot
part of the DRM module. The drivers are responsible for tasks such
as conversion of the commands and managing the command bulffer,
video memory, registers and DMA engines. As stated earlier, i915 is
the DRM driver for Intel iGPUs. Therefore, this is the part of the Linux
graphics stack that communicates directly with the hardware.

2.3 INTEL INTEGRATED GPU

Intel iGPUs are a common component of today’s devices like laptops and
desktops. In contrast to the Discrete Graphics Processing Unit (dGPU), iGPUs are
included on the same chip as the CPU. iGPU has become an attractive resource
for specific tasks like light gaming, media workloads, machine learning
applications [13] which carry sensitive data.

Surprisingly, even though researchers have spent decades securing the CPU,
there is hardly any clarity on the security of the GPU. This leaves them vulnerable
to attacks. The following reasons can be attributed to the lack of research in this
department [56]:

1. Understanding how to secure the GPU requires an extensive domain
knowledge on the interactions between the device hardware, the software
stack, buses and chip-sets.

2. The graphics stack is poorly documented.
3. Many device drivers are closed-source.

4. The drivers have vendor-specific APIs. The security vulnerabilities and
prevention measures required can be different for each vendor.

2.3.0.1 Intel Processor Graphics Model

This section presents a high-level working of the Intel GPU Programming
Architecture, shown in figure 2.8. A discussed in section 2.3, Intel iGPUs,
shares the system memory with the CPU while the other discrete GPUs
might have their own dedicated physical memory.

First, an introduction to the part of the architecture that is common to most
GPUs. A GPU has a render engine and a display engine that communicate
with different buffers. The CPU communicates via GPU-specific commands
that are submitted via the GPU drivers to the command buffer. APIs like
OpenGL see the command buffer with a primary ring buffer that helps to
chain together the batch buffers. The render engine is responsible to fetch
the commands from the command buffer and then executes them [48]. The
display engine is responsible to fetch these pixels from the frame buffer that
is rendered on an external computer display.
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Now, we discuss the part specific to the iGPU programming architecture.
The system memory. Shared Virtual Memory (SVM) is a 2GB global virtual
graphics memory that is shared between the CPU and the iGPU is mapped
via the global page table. It serves as the command and frame buffer. The
iGPU has 2GB of local virtual graphics memory that is mapped via the local
page table and mainly serves during hardware acceleration.

B

Program

Figure 2.8: Intel Processor Graphics Architecture [1]

2.3.1 Intel ig15 GFX Driver

One of the DRM device drivers of Intel is i9g15 GFX driver. The ig15 driver is
presented as a kernel module that exposes an API interface to the user-space
applications that can be accessed via the ioctls. The ig15 driver provides various
functionalities that are divided into following parts:

1. Display - This part includes everything related to the display hardware. i915
is the only DRM driver that implements it's own mode setting infrastructure.

2. GEM - This part of the driver manages the GPU memory and assists in
submitting the commands to the GPU buffer.

3. Core Driver Infrastructure - This part is used by both the display and GEM
parts of the driver.

The user-space application can access the ig15 driver via the device files and
can use the system call open to request access from the kernel for these files.
Once the application is validated, the kernel allocates the resource to the file and
provides the application a handle called file descriptor to refer to the device file.
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The application can then access various ioctls exposed by the ig15 driver via the
file descriptor. The close syscall is used to end the access to the file.

The ig15 driver might be a good candidate as a first step at securing the the
Intel Linux Graphics Stack because of the following reasons:

1. As stated in section 2.1.3, device drivers operate at a privileged level and
talk directly to the hardware. This makes the GPU device driver a potential
attack surface.

2. The code for Intel ig15 driver is open-source and therefore, any security
issues can be easily patched.

3. Intel iGPUs have a market share of 64% [3] which is a huge target surface.
This calls for an urgency to investigate the security implications of the iGPU
drivers.

2.4 FUZZING

Fuzzing refers to the process of discovering vulnerabilities by repeatedly running
fuzz inputs against a target software and observing for unforeseen behaviour.
According to [34] fuzz input is an input that can provoke an unexpected behaviour
from the software under consideration. With the help of fuzzing, various types of
potential bugs or a critical software vulnerabilities. Therefore, it has been used by
various security researchers to test targets like parsers, network protocols, crypto
libraries, compilers, interpreters, browsers, text editors/processors, OS Kernels
and many more [4]. On the basis of source code availability and the amount of
program analysis involved, the fuzzers can be classified as:

1. Black-box Fuzzer: Fuzzer that cannot see the source code of the target
software and can only observe the input/output behaviour of the software.
With this fuzzer, there is no verification of which parts of the code have
been covered.

2. White-box Fuzzer: Fuzzers that have access to the source code and hence,
have more control over the information retrieved through static analysis
and control flow. The fuzzer can channel the fuzz input with the visibility
of the internal code being fuzzed to get maximum code coverage.

3. Grey-box Fuzzer: Fuzzers that take the middle ground between black-box
and white-box. They do not have access to the source code, but they make
use of the disassembly or dynamic runtime information to retrieve useful
information such as code coverage. This can be achieved by instrumenting
the source code or using certain tracing approaches.

The inputs in the above fuzzers can be completely random, mutated or
generational.
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2.5 COVERAGE-GUIDED FUZZING

In the basic fuzzing algorithms, the output from the fuzz inputs is generally
ignored. An extension to these algorithms is to use this output to improve the
quality of future fuzz inputs. The coverage-guided fuzzer maintains an input corpus
containing the interesting fuzz inputs and mutates these inputs using certain
procedures. The mutated inputs remain in the corpus only if they provide some
"new coverage" and hence, receive positive feedback. The rest are discarded.
This fuzzing strategy has shown to be very effective in finding real-world bugs
and vulnerabilities [15], [37].

Figure 2.9: Control Flow Graph

Algorithm 1 Generic Coverage-Guided Fuzzing Algorithm

1: Input Corpus: C

2: while 1 do
3: Random Input M is chosen from C
4 M is mutated to M’
5: Run M’ against the target
6: if crash then
7: Save to disk
8: else if new coverage explored then
9: Add M’ to C
10: else
11: M’ is discarded

What really is coverage? This would depend on what kind of fuzzer it is and
what are it’s goals. The most common way to define coverage is by ""how much
of the code is covered". To determine this, the number of code parts that are
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executed are counted. Traditional code-coverage metrics include the basic blocks,
edges, paths, number of lines, etc. In this case, the fuzzer is known as a coverage-
guided fuzzer. When a fuzz input explores a new line, block, edge or path, the
code-coverage is incremented. For example, consider a fuzzer uses edge coverage.
In this case a fuzz input would be considered interesting if it finds a new edge
from the control flow graph shown in 2.9. If previously path A->B->C->D->G has
been discovered by the fuzzer, then the new fuzz input is considered interesting
and kept in the corpus after it finds the path A->B->B->C->E->G as the edges
B->B, C->E and E->G have not been explored before. After these two paths have
been explored, if a fuzz input explores the path A->B->B->C->D->G, it will not
be considered interesting even if it has lead to a unique path.

A generic algorithm for coverage-guided fuzz testing is presented in 1. The
algorithm takes a set of fuzz inputs C. The next steps carry out the fuzz testing
and are performed inside an infinite loop. A random input M is chosen from
the corpus C and mutated it according to some procedure. The mutated input’s
code-coverage is measured after running it against the target software. If the
input causes a crash, then save it to the memory. If it covers new parts of code,
then add it to the corpus C. Otherwise, discard the input.
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FUZZING THE Ig15 DRIVER

This Chapter provides a brief overview of the different approaches and
challenges for fuzzing the ig15 driver and gives a brief overview of different
technologies and concepts that will be used in this thesis. Section 3.1 presents the
challenges a fuzzer needs to overcome to fuzz the ig15 driver. Section 3.2 defines
the benchmarks on the basis of which a fuzzer setup can be considered
reasonable to deploy at large-scale driver validation. Section 3.3 gives a brief
overview of the different possible approaches to feed input to fuzz the ig15
driver and our chosen approach. The next sections provide an introduction to
two prominent kernel fuzzers to perform fuzzing on the ig15 driver. Section 3.4.1
and Section 3.4.2 describe the basic idea and concepts of Syzkaller and kAFL
respectively.

3.1 CHALLENGES IN FUZZING DEVICE DRIVERS IN KERNEL-SPACE

In this section we present the challenges that can be expected while fuzzing
device drivers in kernel-space. We first describe the general challenges that come
with fuzzing in kernel-space and then we describe the challenges specific to
fuzzing a device driver.

3.1.1  Kernel-Space Challenges

The following are the challenges that prevent a user-space fuzzer like AFL to fuzz
the kernel-space:

1. It is much harder to collect dynamic branch/edge information during
runtime for kernels. Several approaches have been proposed but they lead
to poor runtime performance or require the target kernel to be recompiled
(kcov).

2. The mechanisms of crash detection need to be modified as a kernel bug can
lead to termination of fuzzing. Therefore, the fuzzer needs to run external
to the target kernel so that it can reset the state of the target kernel. Another
possibility could be to run the fuzzer on the host and save the fuzzer state
even if the host kernel crashes.

3. The kernel has non-deterministic events like interrupts or trap handlers.
These can lead to unnecessary noise in the collected coverage.
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3.1.2 Device Driver Challenges

Now, we discuss the challenges that can arise while fuzzing device drivers like
the ig15 driver:

1. Device Access: To fuzz a device driver it is necessary for the device to
be attached to the system under test. The fuzzer should either have the
capability to attach and detach the physical device to the system or be able
to simulate it.

2. Stateful Device: The added device to the system becomes an added source
of fuzzing instability as it contains state information at runtime and when
the device is in a different state, the handling of commands from the
device driver and external interrupts may be different. The state of the
device is controlled by configuration registers. A user process can change
the configuration registers, which further changes the working logic of the
device. This essentially means that the device has transitioned from the
prior state to a new one. The changes according to hardware interrupts also
affect the change, which a user cannot control.

If a fuzz input is able to reach the device, the behavior of the device under
this input is dependent on the previous state of the device and the current
input itself. The current input can also generate a new state. As hundreds
or thousands of random fuzz inputs are sent to the device, the device state
is continuously transitioning.

This is a key problem when fuzzing a target with the involvement of real
hardware as it can lead to the following challenges:

* Fuzzing termination: It can possibly cause a device to reach a dirty
state and cause a hang that can crash the entire system during the
tuzzing process. This could terminate the fuzzing process if the fuzzer
is running on the host. This leads to the following problems: (1) The
fuzzer looses the data of this fuzzing session; (2) It is not able to contain
the crash or record the crash information and (3) The fuzzing process
does not remain continuous. In case of a crash, the fuzzer should be
able to contain the crash, save the crash information and continue
fuzzing.

¢ Input Effectiveness: Assume the initial state of hardware as STATE,.
When the first fuzz input A is executed against the target, it does not
reach the device and fails to cause a state transition in the device. The
corresponding feedback is provided to the fuzzer. The second input B
inherits the STATE, and is able to cause a state transition in the device
to STATE;. The next input C inherits the changed device STATE; and
the corresponding feedback is impacted and provided to the fuzzer.
In reality, the input evaluation is done considering that the feedback
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received is based on the initial state of the system. This can lead to
ineffective inputs being generated.

* Reproducibility: It is evident from the previous point, that the state
transitions add non-determinism to the input execution. The fuzz input
might generate different coverages depending on the device state it
inherited. Therefore, if a crash is observed it might not be possible to
reproduce the crash without knowing the state information.

¢ Non-Deterministic Multi-Core Processor: This challenge is specific to
device drivers for multi-core processors. Most single-threaded
programs executing on a uni-core processor exhibit determinism. With
the increased parallelism of multi-core processors and multiple fuzz
inputs targeted at it, the non-determinism to the fuzzing process
increases.

If the state information is not monitored it maybe difficult to get effective
inputs and correct coverage information which can impact the effectiveness
of using coverage-guiding for the fuzzer and the reproducibility of the
results. Therefore, the fuzzer should also be able to monitor state
information or reset the device to initial state after every fuzz input. But
recording the state information after every the fuzz input can be extreme
wastage of resources.

Parallelism: For a user-space target it is easier for the fuzzer to get maximum
efficiency using paralellization. Multiple instances of the the target can be
started and fuzzed. But this can be difficult to achieve with only one physical
device.

OS-Agnostic Solution: Device Drivers are OS-dependent, therefore the
scalability of the fuzzing solution is affected as it is not OS-agnostic.

QUALITATIVE CRITERIA FOR A FUZZING SOLUTION

A good fuzzing solution should deal with all the challenges presented in Section
3.1. One of the goals of this thesis is to find a fuzzing solution that can fuzz
the i915 driver. The aim is to find an easy to implement solution that can be
used for automated driver validation at a large-scale. We approached this step by
tirst defining what the different criteria are that we look for in an ideally perfect
fuzzing setup:

1. Hardware Access: The fuzzing setup should have the hardware available in

some way or the other for the driver to work. The fuzzer should be able to
access the real hardware or simulate the device.

2. OS-Agnostic: This is an important criterion for large-scale driver validation

process. The solution should be OS-agnostic as it can help with the scalability
of the same solution to different OSes wit h little to no effort.
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3. Technical Knowledge: The amount of technical knowledge required to set
up the solution should be minimal.

4. Crash-Tolerant: Any fatal kernel or device bug can interrupt the fuzzing
process. The fuzzer setup should be able to contain the crashes, store the
crash information and continue fuzzing. This will help the developers to
inspect the bug.

5. Cost-effective: For use in large-scale driver validation, it is important that
the fuzzing setup is cost-effective. It should minimize the dependencies
on additional expensive hardware. The setup should ideally be able to use
one physical device in a parallelized manner to get maximum efficiency
and reduced hardware costs. It should additionally prevent manual labor
for source code annotation or bug triaging. Also, minimal amount of time

should be required to deploy the setup.

6. Reproducibility: The fuzzing setup should be able to ensure that the
results are reproducible. For this, it should deal with the non-deterministic
execution of the fuzz inputs against the target kernel.

3.3 POSSIBLE FUZZING APPROACHES

In this thesis we test the i915 driver by sending random inputs that are generated
by a fuzzer. One of the first steps is to decide how we want to feed these generated
inputs to the device driver as it requires that the hardware is present. As we have
seen in the earlier section, fuzzing with the hardware involved can come with
added challenges. Before we introduce our chosen approach, we introduce some
of the possible approaches at a high-level that have been used for fuzzing device
drivers and could possibly be applied to the ig15 driver:

3.3.1 Device Emulation

In this approach, the fuzzer uses an emulated device to feed the input to the device
driver. The emulated device can be integrated to a guest machine with the target
kernel loaded. In this case, the native device driver can be loaded on the guest. In
[39], the authors have modified the hypervisor in the guest such that the user-space
application’s requests are transferred to the emulated device and not the real
hardware. A hypervisor is a software layer that allows one host system to support
multiple guest machines by virtually sharing the system resources. Therefore, the
fuzzer input can be sent via a user-space application to the device driver code.
Under this approach, there might not be any requirement to make changes to the
device stack.

Now, we look at the possible advantages of applying this approach to fuzz the
ig15 driver:
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1. Low hardware costs: Due to device emulation, the hardware costs are
reduced.

2. Parallelization: The setup can also be highly scalable as multiple guest
instances can be used to fuzz the device driver in parallel. The setup can be
scaled up by using the cloud.

3. Portability: As this approach works at the hardware level, there is no
dependence on the type of OS being used as the target kernel.

Unfortunately, there are certain big challenges with this approach if we want
to apply it to the ig15 driver:

1. Technical Knowledge: As the iGPU is a complex device with a complex
graphics stack, as explained in Section 2.2, the user needs a deep
understanding of the different components of the stack and the inner
workings of the CPU and the iGPU. Thus, the approach is labor intensive
and can take a significant amount of time to deploy.

2. Inaccurate Results: It is not possible to perfectly emulate the workings of
the real hardware and the non-determinism that it adds. Therefore, the
results might differ from the results on the real hardware.

3.3.2 Data Injection in the Device Stack

In this alternative approach the target kernel is modified to feed the fuzzer
generated inputs to the drivers by injecting them at a certain layer of the device’s
stack. This approach has been followed by Syzkaller for Universal Serial Bus (USB)
fuzzing [39] by replacing the driver for the hardware host controller by a software

user-space controller that feeds the fuzz inputs into the device’s stack (dummy hcd).

In PeriScope [46] the authors have modified the Memory-mapped 1/0 (MMIO)
and Direct memory access (DMA) interfaces by intercepting the driver’s access to
the communication channels and fed the fuzzer input to these interfaces.

When applying this approach to the ig15 driver, the GPU has to be made
available to the virtualized environment. The possible advantages of applying
this approach to fuzz ig15 driver may be:

1. Low hardware cost: As these changes are again at the software level, the
hardware costs are reduced.

2. Parallelization: The setup can be run in multiple guest machines, making
it highly scalable to fuzz the ig15 driver in parallel. The setup can also be
scaled using the cloud.

The biggest challenges with this approach for fuzzing ig15 driver are:
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1. Portability: This approach is tightly coupled to the specific kernel being
modified and probably the kernel version (therefore, the ig15 version) as
well.

2. Technical Knowledge: This approach also requires a deep understanding
of the graphics stack, the ig15 driver code and the communication channels
between them.

3. Coverage: The code is not tested end-to-end in this approach as the inputs
are injected at some specific stack layer.

3.3.3 Fuzzing on Bare-Metal

This next approach is straight forward in the sense that we feed the input to the
host device driver directly from the fuzzer running in the user-space on the host
itself. The advantages of this approach for ig15 driver can be:

1. Performance: This option is expected to have the highest performance as
no virtualized environment is involved. The native graphics driver and the
real hardware are involved in the fuzzing.

2. Easy Implementation: The setup is easy to implement as no modification is
required at hardware or software level.

3. Minimal Technical Knowledge: There is no requirement to understand the
graphics stack or the workings of the CPU/iGPU. The knowledge of i915
driver API for a specific OS would be required.

Even if the approach looks tempting, it has certain drawbacks:

1. High hardware costs: Hardware costs increase if we want to test the ig15
driver on different types of systems.

2. Parallelization: As only one system is fuzzed, achieving parallelization
might not be that easy.

3. Crash-Intolerant: If there is a bug caught in the host kernel, driver or the
GPU, there is a high possibility that it causes the system to crash. As the
fuzzer is also running on the host, the fuzzing process can be interrupted
and cannot recover. The information on the bug is also possibly lost and
hence we cannot reproduce the bug.

3.3.4 Device Virtualization

In this section we introduce the approach of device virtualization that we have
chosen for this thesis.
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Multiplexing is the ability for multiple virtual machines to share the same
physical GPU. Device virtualization multiplexes the real device by presenting
each guest with a virtualized device and combines the operations of both devices
in the hypervisor in a way that all the guests use the real device while preserving
the illusion that every guest a device of its own [12].

We choose this approach to fuzz the ig15 driver because of the following
reasons:

1. Minimum Technical Knowledge: The user does not need to know the
hardware protocol or the software stack in detail to implement this setup.

2. Crash-Tolerant: The crashes are expected to be contained in the virtualized
environment.

3. Cost-effective: Using certain configurations of this approach it might be
possible to achieve parallelism in the fuzzing process using one physical
GPU.

Unfortunately, virtualizing a modern GPU is regarded as much more
challenging than Input/Output (1/0) devices like disks or Network Cards (NICs)
[21] The biggest challenges of virtualizing a GPU device are [55]:

1. The GPU architecture and the graphics stack are complex.

2. The non-standardization of the Graphics Stack due to different vendors.

Also, many vendors do not release the source code of the GPU drivers. Even
if the source code is reverse-engineered, with every new release of the GPU
driver significant changes are made to the code that makes this method
unreliable.

3. The GPU architectures involve dramatic changes across generations and
their generational cycle is short compared to the CPUs and other devices

[12].

Therefore, rather than attempting to model a complete GPU, different vendors
have adopted different options for the virtualization of the GPU. In this thesis, we
will explore options that can be implemented to virtualize the Intel iGPU to load
the i915 driver. In the upcoming Sections, we discuss these different platforms
and configurations. Some of these configurations are specific to Intel iGPU. In
Section 3.3.5, we discuss which platform and configuration are chosen for this
thesis.

API Remoting

The API Remoting approach exposes the guest OS with a library that has the same
API calls as the GPU API and a frontend driver, shown in Figure 3.1. This driver
intercepts the high-level API calls (OpenGL, DirectX, CUDA and OpenCL calls)
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from the application before it reaches the GPU driver in the guest OS. These calls
are then forwarded to the backend driver in the host OS using shared memory or
to a remote host with a GPU. After the computations have been performed, only
the results are delivered to the frontend driver through the backend driver. In
short, the aim is to provide an emulated wrapper library which passes the actual
computation to another machine on the local network.

This approach helps overcoming the vendor dependence and ability to run
multiple VMs on one GPU. Due to simple virtualization architecture, it incurs
negligible virtualization overhead [21]. As the virtualization is done in user space,
hypervisor independence is achieved.

The approach also displays some significant drawbacks. High-level API
versions would need to be handled specifically as there might be significant
changes to the standards. Maintaining the frontend driver can be difficult as
some new API calls might be added to the GPU libraries. [21]. The approach
might be a good choice if the guest application is not GPU intensive.

Host OS Guest OS

Backend Driver [ GPU Application ]
.
1 [ [ e
- ) [

GPU driver \ Wrapper Library

Frontend Driver

GPU

Original
Graphics Stack

APl Remoting
Stacl

I'

Figure 3.1: API Remoting Architecture [21]

Intel GVT-s

Intel GVT-s has been developed based on this approach, shown in Figure 3.2. It
helps to forward the API calls of OpenGL or DirectX applications to the ig15
driver on the host OS. It can help to run concurrent guests using only one GPU,
abstracting the graphics hardware from the guest applications by performing
graphics API forwarding.
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Figure 3.2: GVT-S Software Stack [1]

Full Virtualization

Full Virtualization, shown in Figure 3.3 is another alternative approach. It uses
an unmodified GPU driver in the guest OS. The Quick Emulator (QEMU) can
emulate a real GPU in such a way that the guest OS regards the emulated device
as the real GPU. The GPU calls from the guest applications are intercepted by
this emulated device and sent to the host GPU using the shared memory in the
hypervisor. The emulated GPU device is known as Virtual Graphics Processing
Units (vGPU). The states of all the vGPUs are stored in a control block and each
vGPU has a queue that schedules the GPU calls. When a GPU call is made, the
GPU scheduler picks a vGPU and the corresponding queue for the GPU calls.

As the virtualization is implemented in the lower layers at the driver level,
it is possible to reuse the present GPU libraries and handle the latest versions.
The biggest drawback of this virtualization method is that its implementation is
dependent on which GPU driver is used. This means that this process will rely on
whether the code of the driver is available or does it need to be reverse-engineered.
If there is a significant change to the GPU microarchitecture, it could prove to be
a daunting task to update the implementation.
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Figure 3.3: Full Virtualization Architecture [21]

Intel GVT-g

Intel GVT-g is an implementation of the Full Virtualization concept for Intel iGPU.
Figure 3.4, shows the GVT-g architecture with Kernel-based Virtual Machine
(KvM) hypervisor. KVM assists in changing the Linux into a hypervisor.

Intel GVT-g allows the guest to access the real GPU with the native graphics
driver in the host. The technique used is called mediated passthrough that allows
access to performance-critical resources without the hypervisor intervening most
of the times by providing the guest applications the power to directly execute
the command buffer and the frame buffer. Isolation to the guests is ensured
by trapping and forwarding to a mediator driver to emulate the privileged
operations. The mediator issues a hypercall to communicate with the real GPU to
execute these operations and hence, avoiding the complex task of emulating the
render engine. The mediator also provides a GPU scheduler that helps in sharing
the real GPU among multiple guests.

The mediator driver is implemented as a kernel module and provides emulation
of vGPUs. The native graphics driver runs in the guest and accesses the privileged
resources via the mediator. The accesses to command buffer and frame buffer
are passed through to accelerate the performance-critical operations in the guest.
This is achieved by dividing the global graphics memory between the different
guests. The native graphics driver does not have the knowledge of the partition
and expects to be the exclusive owner of that part of the memory. This means
that the guest and host will have different views of the global graphics memory.
To prevent additional overhead of address translations a technique called address
space ballooning helps each guest in marking the parts of the memory that belong
to the other guests as ballooned. This makes the global graphics memory view of
the guest similar to the host.
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While this technique has been used to virtualize Intel GPUs, the authors have
claimed that the technique can be used to other GPUs as well.
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Figure 3.4: GVT-G Architecture with KVM [48]

Hardware-Assisted Virtualization

The Hardware-Assisted Virtualization approach involves utilizing the hardware
extension features provided by different chip vendors for I/O virtualization. Intel
chips provide the feature Intel Virtualization Technology for Directed I/O (V1-d). This
hardware feature assists the hypervisor to get the direct access of the devices. It
provides isolation and security by restricting device accesses to the owner of the
device memory. A technique called DMA-remapping is used to restrict the DMA
and the interrupts of the device to pre-assigned physical memory regions. This
allows the data to flow seamlessly between the guest memory and the pyhsical
device without the need of a hypervisor. It also performs access control based
on the information provided by the guest OS. If an illegal access is performed,
DMA-remapping hardware blocks these calls and reports a fault to the guest OS.

The major drawback of this approach is that only a single guest is supported
by Intel VT-d for I/O virtualization.

Intel GVT-d

Intel GVT-d leverages the Intel VI-d technology to provide the guest with full
access to the real GPU shown in Figure 3.5. The Linux graphics stack can directly
use the real GPU without having to make any modifications to the driver code or
GPU libraries. This means that the host will have no access to the GPU during
this time and hence, this approach cannot allow the sharing of the GPU with
multiple guests.
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SR-IOV

This is another variant of hardware virtualization. The goal of this technique is to
standardize the way of bypassing the hypervisor’s involvement in the movement
of data between the guests and the hosts or between the guests. Single Root IO
Virtualization (SR-IOV) implements I/O virtualization directly on a device and
can provide very fast I/O. Multiple Virtual Functions (VFs) are implemented,
with each VF directly assignable to a guest. This technique has been used by
some vendors for GPU virtualization. This technique is mainly used for NICs
and is currently not supported by Intel iGPU. This approach can overcome the
drawback of Intel GVT-d of not supporting multiple guests and also provide the
native hardware for fuzzing.

3.3.5 Choice of Virtualization Method

In this section we present the reader with the GPU virtualization configurations
that we investigate in this thesis. We also discuss their advantages and
disadvantages in the fuzzing process.

Intel GVT-s and SR-IOV are not supported for Intel iGPUs at the time of writing
this thesis. Therefore, we decide to investigate other available options Intel GVT-g
and Intel GVT-d for our fuzzing solution during this thesis.

Both GVT-g and GVT-d configurations can provide certain advantages to our
fuzzing solution as follows:

1. The user is not required to possess skilled technical knowledge to implement
the configurations. But the user is required to be aware of the GPU pass-
through concepts.
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2. Their implementation process for machines with similar specs can be
automated.

3. GVT-g provides the possibility to increase fuzzer efficiency. It allows the
fuzzer to target multiple guests by multiplexing the GPU.

Unfortunately, both the configurations can provide challenges while fuzzing
the ig15 driver:

1. In GVT-g the guest is presented with a vGPU which does not have any code
coverage feedback. Therefore, it might be hard to know the status of the
virtualized component to optimize the fuzz inputs for effective testing.

2. GVT-d does not support multiplexing therefore, the efficiency of the fuzzer
might be affected.

3.4 FUZZING TOOLS

The next step to building a fuzzing solution is to find fuzzing tools that solve the
challenges using the chosen device virtualization techniques. Coverage-guided
tuzzing is a well-established technique used by fuzzers for the user-space [14],
[44], [17], [40]. But there are only a few that are targeted at the kernel-space.
Some proposed coverage-guided kernel fuzzers have been developed keeping
the popular AFL design as the base [7], [51], [29]. In this thesis we will look at
two prominent solutions: kAFL and Syzkaller.

KAFL is also built upon the fundamental AFL design and benefits from the
hardware feature Intel processor trace [43]. It is able to fuzz OS kernels and
trace the execution accurately with low overhead. There have been other kernel
validation extension that have been published using kAFL [5], [20], [42]. In this
thesis we use a version, maintained by Intel, that is modified and integrated with
the published extensions. For the purpose of presentation, we call this tool now
onwards Intel kAFL.

Syzkaller is a widely used coverage-guided fuzzer that exploits the predefined
syscall descriptions to generate sequence of syscalls. Many researchers have
tried to integrate different kernel validation techniques and optimizations with
Syzkaller [38], [22], [54]. It has also been successfully deployed to fuzz the Linux
kernel at large-scale.

In the following Sections 3.4.1 and 3.4.2 we introduce both kAFL and Syzkaller
in detail.

3.4.1 Syzkaller

This section will provide an overview of the technical aspects and the
implementation details of Syzkaller.
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Syzkaller is a coverage-guided kernel fuzzer that is momentarily the most
widely-used fuzzer to fuzz the Linux kernel. It was initially developed as an
open-source project by Dmitry Vyukov and a team from Google in 2016 [28].
It has been successful in finding 3000+ bugs to date in the upstream kernel.
Syzkaller also supports other OS kernels like Akaros, Darwin/XNU, FreeBSD,
Fuchsia, NetBSD, OpenBSD and gVisor [15].

Blind fuzzing for kernel can generate huge amounts of input and only a few of
them turn out to be valid inputs for the kernel. It has been observed that most
of the bugs that are caught in this manner are input validation bugs[23] and it
is difficult to cover the entire kernel code [36]. The best way for the user-space
applications to access the kernel is through system calls, therefore, Syzkaller
uses the semantic knowledge of these system calls to manipulate fuzzing inputs.
Using these descriptions, Syzkaller is able to cover a large part of the kernel and
uncover different types of bugs.

For further optimization of the fuzzing process, Syzkaller notes the code-
coverage achieved by each input and tries to maximize the coverage [2]. A corpus
of inputs is created and any input that increases the coverage is mutated to reach
more code for testing.

X

U http: url
syz-manager v dirfcrashes/crashN-T workdir: dir
dirfcorpus/*

VM Management

sshkey: file

input
= syz-executor
erage info

— syz-fuzzer

KERNEL

Figure 3.6: Process Structure for Syzkaller [15]

As shown in Figure 3.6, Syzkaller comprises of three main components: syz-
manager, syz-fuzzer and syz-executor. Syz-manager is the "manager program"
that controls the entire fuzzing campaign. Once started, it spawns and monitors
multiple guest instances that have the target kernel and the binaries syz-fuzzer
and syz-executor running inside of them. The manager uses the Secure Shell (SSH)
protocol to connect to these virtual machines and invoke these binaries. Using
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Remote Procedure Call (RPC) communication, the manager remains in contact
with the syz-fuzzer to communicate information to and fro the virtual machine.
The manager can send the config file and existing inputs to the machines and
receive the results via the syz-fuzzer.

On the VM side, syz-fuzzer carries out the fuzzing campaign by generating,
mutating and minimizing the test cases. It forwards these inputs to the
syz-executor binary, using Inter-Process Communication (IPC), that runs these
inputs against the target kernel. This triggers coverage information that is then
communicated to the syz-fuzzer. Information about any input that generates new
code coverage is provided to the syz-manager. The manager stores the
information about crashes and corpus in the work directory provided by the user.
The manager also exposes a web-interface for the user to view the details of the
fuzzing campaign and the code-coverage information.

3.4.1.1 Harness Setup
Syzlang

Syzkaller provides the user with the capability to define the syscall interfaces of
the target in a description file using a declarative format called Syzlang. Following
is an example of how the syscalls might be described using Syzlang;:

open(file filename, flags flags[open_flags], mode flags[open_mode]) fd

read(fd fd, buf buffer[out], count len[buf])

close(fd fd)

open_mode = S_IRUSR, S_IWUSR, S_IXUSR, S_IRGRP, S_IWGRP, S_IXGRP, S_IROTH,
S_IWOTH, S_IXOTH

J

As seen above, it can support types like file descriptors, flags, etc. It also gives
the user the power to define compound data types like struct, union, enum, etc.

Input Generation

The description file is translated into an executable code by syz-executor. The
descriptions are stored as a map data structure. If the user wants intends to
perform targeted fuzzing, they need to enable the target syscalls in the config file.
If none has been defined, the fuzzer uses all the syscalls defined in the target
kernel folder. If certain syscalls have been enabled, then the fuzzer marks them
enabled in the map.

Syzkaller implements a mechanism to create Programs (Progs) such that new
coverage can be triggered. Using the map, the fuzzer builds a ChoiceTable which
contains weighted probabilities of all the enabled syscalls depending on the
previously executed syscalls. For given syscalls X and Y, the probability of Y is a
best guess whether a fuzz input already containing the syscall X would give new
coverage. If not, then syscall Y is added.
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The probability is calculated using the static priority and the dynamic priority. The
static priority is calculated by examining the argument types of both the syscalls.
The dynamic priority is calculated by examining the frequency of occurrence of
the pair of X and Y syscalls in the current corpus.

The ChoiceTable is then used to generate a list of programs Prog that are to be
executed. Each program is a list of sequential syscalls with concrete values for
arguments. Following is an example of program generated by Syzkaller:

ro = openat$i9ls5(Oxffffffffffffffoc, &(0x7f0000002840)="/dev/ig15\x00", 0Ox0,
0x0)
10ct1$DRM_IOCTL_I915_QUERY(r0, 0x4602, 0x0)

3.4.1.2 Fuzzing Strategy

Syzkaller aims to prioritize the test cases that can lead to interesting areas. It
employs the following techniques to achieve this:

Mutations

After a Prog has been generated and run against the target kernel, Syzkaller
mutates the current test case using smart mutations. The following mutations are
used according to their likelihood calculated using certain heuristics:

1. Syzkaller can remove a syscall from the Prog test case at random.

2. Syzkaller can change the value of a particular argument. This becomes
possible because it already has the knowledge of the types of the syscall
arguments. For example, it can resize the arrays/buffers, change union
options, flags, len/bytesize, filename or pointers.

3. Syzkaller can insert a syscall to the Prog test case.

4. Syzkaller can also splice a Prog with another one from the corpus. This is
based on resources. First, it helps in deciding which programs are to be
spliced. For example, if the Prog X uses a Transmission Control Protocol
(TCP) socket then Syzkaller finds another Prog Y that also uses a TCP socket
and splices the two test cases. Second, it helps in deciding which syscalls
to merge. For example, if a syscall A uses the TCP socket, Syzkaller would
include the syscall that creates a TCP socket.

5. Binary large objects (BLOBs) are a bunch of binary data stored in a single
data type. These objects are used to store binary data for audio, images or
executable code. If such an argument exists, then Syzkaller uses traditional
mutation strategies like flipping bits, inserting /removing bytes, arithmetic,
etc.
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Coverage Collection

The first part of coverage collection involves setting up compile-time instrumentation
which is supported both by GCC and Clang/LLVM. GCC and Clang/LLVM
compilers insert a function call as instrumentation into every basic black and
edge.

_sanitizer_cov_trace_pc();
while(...){
_sanitizer_cov_trace_pc();

}

_sanitizer_cov_trace_pc();

The next part of coverage collection takes place during runtime. Syzkaller uses
kernel module KCOV which provides the coverage data of the target kernel via
the kcov debugfs file. KCOV can collect precise coverage of a single syscall as it
is enabled on a thread basis. It is to be noted that interrupts cannot be traced
with KCOV and certain kernel files like scheduler and memory allocator are not
instrumented. There is a shared buffer between kernel-space and user-space that
contains the coverage information of the target kernel. This buffer can be read by
Syzkaller from the user-space.

Syzkaller maintains a max coverage and a min coverage. If the latest received
coverage falls between both these coverages, the fuzz input is immediately
discarded. But if the latest coverage is some new coverage and also the new max
coverage, this fuzz input would be considered interesting.

Syzkaller runs the new interesting fuzz input multiple times to make sure
that the coverage received is not flaky. If in all the runs the input produces new
coverage, the input is added to the corpus otherwise, discarded.

3.4.1.3 Why Syzkaller?

There are many kernel fuzzers that have been proposed that promise attractive
performances. we choose Syzkaller as it is a state-of-the-art fuzzer and widely
used in the industry for fuzzing. Following reasons make it widely accepted in
the industry and a good fuzzer for comparison to:

1. Accessibility: The Syzkaller source code has been released as open-source
with Apache License 2.0 on Github. This favours the industry and acamedic
research like this thesis into adopting the fuzzer as the costs of kernel
fuzzing are reduced.

2. Fuzzing Stateful Driver Interface: The device driver interface is stateful.

The fuzz input of Syzkaller includes a sequence of syscalls and the resources
created by an earlier syscall is used by subsequent syscalls. In fact, syscalls
are only fuzzed if their prerequisite resources have been created. This can
result in higher code coverage of ig15 driver because fuzzing would be
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performed with valid syscall structures and there is a good chance that the
interesting parts of the code will be reached.

3. Support: Syzkaller is under active maintenance with regular updates.
There is an active Google group that provides technical guidance and
troubleshooting support for the general users and academics. As there is
active academic research in extensions for Syzkaller that are merged with
the code, the industry can reduce their costs of maintaining the modified
code.

3.4.2 kAFL

AFL’s smart fuzzing design has seen overwhelming success over the last few
years for user-space applications. KAFL is an AFL-like fuzzer that adds the layer of
kernel fuzzing. In this section, we provide a technical overview of KAFL, how we
set it up to fuzz the ig15 driver and the results.

As kAFL’s fuzzing logic is from the AFL family, it is important to first have a
quick overview of AFL working.

3.4.2.1 AFL

AFL employs an input queue to store all the inputs that are either provided by
the user or generated while fuzzing. The fuzzer picks an input and performs
different mutations on it for a while and runs each mutated input against the
target application. AFL leverages the compile-time instrumentation of the target
applications to trace the coverage information and write it into a bitmap. If the
coverage includes a new path, the mutated input is put in the queue, otherwise
discarded. The bitmap is a shared memory buffer between the target application
and the fuzzer’s virtual memory and is 64KB in size by default. Each basic
block and edge of the target application is assigned a random identifier. All the
new paths are stored as a hashed tuple of two edge identifiers. These identifiers
are added by compilers like gcc and clang after any x86-64 conditional and
unconditional jmp instruction.
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/* AFL INSTRUMENTATION x*/

cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location ~ prev_location]++;
prev_location = cur_location >> 1;

while(...){
/* AFL INSTRUMENTATION x*/
cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location ~ prev_location]++;
prev_location = cur_location >> 1;

J

The mutating strategies are executed sequentially. First, comes the deterministic
stage that includes sequential flipping of bits, sequential addition/subtraction of
small integers and sequential addition of known interesting integers [16]. The
purpose is to produce fuzz inputs in such a way that there is not much difference
between crashing and non-crashing inputs. This stage is executed first for all the
inputs that are currently in the queue. Second, is the non-deterministic stage that
includes bit flips, additons, subtractions, arithmetics and splicing of fuzz inputs.
These mutations can be perfomed at multiple random locations.

3.4.2.2 General

kAFL is an OS-independent, AFL-inspired and hardware assisted kernel fuzzer
prototype. The 3 components of the fuzzer are (1) Fuzzing logic; (2) Guest
infrastructure of QEMU Processor Trace (QEMU-PT) and KVM Processor
Trace (KVM-PT); and (3) User-space agent. The fuzzing logic acts as the command
and control of the fuzzer by managing the input queue, analyzing coverage
traces, mutating inputs, scheduling them for testing and presenting results to the
user. KAFL makes use of the hardware-accelerated feature of Intel’s Processor
Trace (PT) to gather coverage information of the guest process. kAFL uses a
modified version of KVM and QEMU (called KVM-PT and QEMU-PT). KVM-PT
running in kernel-space is responsible to activate or deactivate the Intel PT trace
for the guest process. QEMU-PT running in user-space is responsible to
communicate with the wuser-space agent, decodes the trace data into
AFL-compatible bitmaps and passes it on to the fuzzing logic.

The guest infrastructure facilitates data sharing and communication using
custom hypercalls and by providing direct memory access to the guest’s
memory[5]. KVM-PT has been patched to pass the custom hypercalls to the
fuzzing logic.

The user-space agent runs inside the guest in user-space and simply gathers
inputs sent by the fuzzing logic using the hypercalls and runs them against the
target kernel in the guest. This agent is divided into two parts: (1) loader; (2) and
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user-mode agent. The loader has the main responsibility to get the user-mode
agent to the guest and execute it there. There are two reasons to divide the agent
in two parts:

1. If the user-mode agent crashes, the loader can restart it.

2. We can pass any binary harness to the guest and multiple target harnesses
while reusing the same guest snapshots to fuzz different components of the
kernel

The biggest deviation from the design of AFL is the extensive use of parallelism
and multiprocessing[43].
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Deactivate Trace

Figure 3.7: Overview of kAFL Structure [43]

3.4.2.3 Harness Setup

The user-space agent can execute a binary harness that is used to target fuzzing
for a specific component of the kernel. It can submit the address range of the
target component to the QEMU-PT decoder for filtering the traces received. It
can also submit the PANIC and KASAN handler function of the guest to the
QEMU-PT. If this handler function is called during the fuzzing process, code in
listing 3.4.2.3 gets executed. This code is used to inform the host of a crash and
then halts the vCPU.

void kafl_panic(void){

asm volatile("cli\n\t");

writel(MMIO_REG_PANIC, kafl_guest_dev.regs+status_reg);
asm volatile("hlt\n\t");

}

J

The binary harness needs to communicate with the fuzzing logic to get inputs.
It does so via pre-defined custom hypercalls which is the interface to communicate
with the hypervisor. Following are some important hypercalls that need to be
included in the harness:
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1. HYPERCALL_KAFL_GET_PAYLOAD: This is used by the harness to feed
the host the payload buffer address to write the payload.

2. HYPERCALL_KAFL_NEXT_PAYLOAD: This is used to request the next
payload after the snapshot has been restored. The hypercall blocks the
harness until the fuzzing logic copies the payload to the buffer.

3. HYPERCALL _KAFL_ACQUIRE: This hypercall starts the tracing of the
execution.

4. HYPERCALL_KAFL_RELEASE: This hypercall stops the tracing of the
execution and reloads the guest snapshot to the point where next payload
is to be requested.

The harness can then use this payload to inject it in a fuzzing routine or certain
syscalls.

3.4.2.4 Fuzzing Strategy

The fuzzing logic is based on the AFL fuzzing logic with added radamsa [20] and
redqueen(s].

One of the differences from AFL in coverage collection is that kAFL uses the
basic block addresses rather than a randomly assigned identifier to calculate the
hashed tuple. The major difference is that kAFL is a hardware-assisted fuzzer
that collects coverage using Intel PT.

3.5 RESEARCH QUESTIONS

Having described in brief the challenges in fuzzing the i915 driver, the possible
fuzzing options for the ig15 driver and the two prominent coverage-guided kernel
fuzzers, we finally turn our focus towards organizing this landscape to enable us
to design some solutions to overcome the challenges with fuzzing the ig15 driver
described in 3.1.

According to the research contributions discussed in Section 1.2, we now define
the main research questions for this thesis.

(I) What are the different options for fuzzing the ig15 GFX driver for large-scale driver
validation?

RQ1: Which of the two fuzzing tools, Syzkaller or kAFL, is better suited for
large-scale driver validation?

RQz: Which of the different fuzzing solutions explored is better suited for large-
scale driver validation?

(I) Present a quantitative analysis of Syzkaller and kAFL with the Intel ig15 GFX
driver as the target.
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RQ3: To compensate for the lack of knowledge of the syscall structures in kAFL,
can we write a more clever harness and get similar coverage for the i915 graphics
driver?

RQg: Can we use kAFL as an alternative to Syzkaller?




EXPERIMENT SETUP

This Chapter describes in detail the target platform and configurations that we
use for our evaluation, the process to set them up and fuzz, the challenges faced
and the solutions proposed.

The chapter is structured as follows - In Section 4.1 we present the process of
setting up the evaluation platform. We first describe the experimental
environment and then the setup of each configuration, GVT-g and GVT-d. In
Section 4.2 we present the different fuzzing solutions that are tested with
syzkaller and kAFL, the limitations and challenges faced in each setup and
fuzzing process. We also present the fuzzing results for each solution. In Section
4.3 we discuss why and how to setup comparable fuzzing solutions for syzkaller
and kAFL for the performance evaluation of the fuzzers.

4.1 EVALUATION PLATFORM

Initially, the objective of this thesis was to provide a performance analysis for
both the device virtualization techniques, Intel GVT-g and Intel GVT-d with both
the fuzzers. Unfortunately, we are only able to compare the fuzzers using Intel
GVT-g configuration. The following sections describe the evaluation platform
used to carry out experiments. In Section 4.1.0.1 we detail the hardware and the
software requirements and in Sections 4.1.0.2 and 4.1.0.3 we present the steps to
reproduce the evaluation configurations, GVI-g and GVT-d respectively.

4.1.0.1 Environment

To be able to evaluate the impact of our design choices, we setup the fuzzing
solutions on Intel-based x86_64 machine, Intel NUC 9 (NUC919QNX). The machine
is equipped with 2.40GHz Intel Xeon E3-1200 v5/E3-1500 CPUs (each with 8
cores), Intel UHD Graphics 630 and 32GB RAM running Ubuntu 20.04. The BIOS
version used was the latest QXCFL579.0044.2020.0617.1537. It is mandatory that
the machine supports virtualization and I/O Memory Management Unit (IOMMU)
groups. To account for possible variations in the results, all the fuzzing solutions
are run on this single machine.

We use the Linux kernel v5.11.16 as the host kernel as it is supported by both
the fuzzers. The QEMU version we use is v5.0.0. We choose the Linux kernel
v5.10.52 as the target kernel version for ig15 driver because it was the latest long
term support (LTS) at the time of conducting the experiments. According to the
kAFL developers, the number of edges covered reported by kAFL were more
accurate than the basic blocks covered at the time of writing this thesis. According
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to Syzkaller, it can report the number of edges covered if the Linux kernel is
compiled via Clang/LLVM . Therefore, to get comparable coverage metrics, the
target kernel for both the fuzzers was compiled with Clang/LLVM version 11. We
use the minimal Debian Stretch image as the target OS for Syzkaller and Ubuntu
20.04 for KAFL

4.1.0.2 Intel GVT-g

Based on our practical evaluation and assessment in Section 3.3.5 we choose
the GVT-g virtualization option. This section will give a brief overview of the
technical concepts and the process of setting up this configuration.

We successfully tested the Linux kernel versions v5.4.0-59, v5.8.0-66,
v5.10.52 and v5.11.16 (latest stable) and the Qemu versions v4.2.1 and v5.0.0
this configuration.

Creating the virtual GPU

The first step is to create a virtual GPU (vGPU) on the host and then assign it
to the guest machine. The guest will see this vGPU as the real GPU and is able
to access it even if it does not have the particular device driver. By adding the
kernel parameters intel_iommu=on and i915.enable_gvt=1 the IOMMU support
and Intel GVT-g is enabled on the host respectively. By loading or compiling the
kernel modules kvmgt, vfio_mdev and vfio_iommu_typel, vGPU configurations
are created. Finally, a universally unique identifier (UUID) is assigned to create a

vGPU.
Add vGPU to Guest

The following QEMU arguments are added to attach the vGPU device to the
guest machine.

-vga none -device vfio-pci,sysfsdev=/sys/bus/pci/devices/OOOO:00:02.0/<UUID>J

To check if the addition has been successful, run 1spci on the guest machine
to see if your GPU is visible. Also, the GPU device files /dev/dri/card@® and
/dev/dri/renderD128 should be available on the guest machine.

4.1.0.3 Intel GVT-d

The next option we choose is the GVT-d virtualization option, according to
Section 3.3.5 . This section gives a brief look into the steps taken to set up this
configuration.

We successfully tested the Linux versions v4.19.0, v5.4.0-59, v5.8.0-66,
v5.10.52 and v5.11.16 (latest stable) and Qemu versions v4.2.1 and v5.0.0 for
this configuration.
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Host Settings

Devices that are part of IOMMU groups can be passed to a guest machine. But
these devices are isolated and therefore, not available to the host anymore. Also,
at one time only the devices in one IOMMU group can be isolated at the same
time. It is important in our case to isolate only the iGPU. The IOMMU feature
is enabled by adding the kernel parameter intel_iommu=on. It is important that
the host does not load the ig15 driver on boot, else it is not possible to isolate the
iGPU. To prevent the host from loading the ig15 driver on boot, we add the GPU
to the vfio-pci module which reserves the GPU for the passthrough.

GPU Passthrough

The following QEMU arguments are used to pass the iGPU to the guest machine:

-vga none -device vfio-pci,host=00:02.0,x-vga=on J

Similar to GVT-g, check if the addition has been successful by running 1spci
on the guest machine to see if the GPU is visible. Also, the GPU device files
/dev/dri/card® and /dev/dri/renderD128 should be available on the guest
machine.

4.2 FUZZING SETUPS

Setting up Syzkaller comprises of 3 phases: (1) Syzkaller Setup; (2) Target Setup in
Guest; and (3)Fuzzing. [45]. In the following sections, we discuss these phases in
detail for 3 configurations: (1) GVT-g; (2) GVT-d; and (3) Isolated Target. where we
describe what challenges/setbacks were faced at every step and what solutions
were tried.

4.2.1  Syzkaller Setup

The first phase is common to all the configurations and involved preparing the
following elements required for fuzzing with Syzkaller:

1. Syzkaller requires that the kernel should be compiled with static
instrumentation. For the compilation of the target kernel, it was essential to
have a recent version of a C compiler with coverage support.

2. The kernel also needs coverage support. For this, the Linux kernel needed
to be compiled with coverage (kcov) additions.

3. Syzkaller requires a virtualization tools like the guest kernel image, KVM,
QEMU, etc.

4. The Go toolchain is required to be setup to build Syzkaller.
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Syzkaller supports different kernel architectures and guest machine types. For
this thesis, two of these setups seemed interesting. The first one that we chose
is the Setup: Ubuntu host, QEMU vm, x86-64 kernel because we had tested
the virtualization configurations using QEMU and it is also the virtualization
software used by kAFL and hence, it would provide us a good basis of comparison.
The second setup chosen is the Setup: Linux isolated host as it could give
us the opportunity to fuzz the ig15 driver on bare metal without the need of
virtualization and to compare the bare-metal approach and our chosen approach
of device virtualization.

For the first step we pick the default gcc version 9.3.0 that comes with Ubuntu
20.04. We compile the Linux kernel using default compiler and with additions to
the configuration file like coverage support and different debugging options. The
compilation process generates the kernel bZImage.

For the guest Linux image, we pick the minimal Debian Stretch Linux image
provided by Syzkaller. For the Isolated Host setup we use Ubuntu 20.04 on the
target machine.

4.2.1.1  Fuzzing Setup

To fuzz the ig15 driver, the next step is to setup the device virtualization
configurations Intel GVT-g and Intel GVT-d, as discussed in Section 3.3.4. We
discuss below how we incorporate these GPU virtualization configurations to
fuzz the ig15 driver with Syzkaller. We also provide details of the Isolated Host
setup.

For the configuration setups, the target kernel bZImage and the Debian Linux
image are loaded into a QEMU instance. For the Isolated setup the target kernel
bZImage and Ubuntu image are loaded into the target machine.

In the following sections, we present the modified Syzkaller configurations,
challenges/setbacks that we faced and the solutions applied for all three
approaches. We present the findings on running Syzkaller with each
configuration. It is to be noted that minimizing the inputs of the Syzkaller bug
report, reproducing the bugs and finding vulnerability or exploitability of the
bugs is out of scope of this thesis. The findings were simply reported to the
relevant development teams for further analysis.

Intel GVT-g
Guest Setup

The following Syzkaller configuration file is used to enable GVT-g configuration
in the QEMU guest for Syzkaller.
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{
"target": "linux/amd64",
"http": "127.0.0.1:56741",
"workdir": "~/gopath/src/github.com/google/syzkaller/workdir",
"kernel_obj": "~/linux/",
"image": "~/image/stretch.img",
"sshkey": "~/image/stretch.id_rsa",
"syzkaller": "~/gopath/src/github.com/google/syzkaller",
"procs": 8,
"reproduce": false,
"type": "gemu",
"enable_syscalls": [
"openat$ig9l5",
"ioCct1$DRM_IOCTL_I915 x*"
1,
"vm": {
“count": 1,
"gemu_args": "-enable-kvm -cpu host,migratable=off -vga none
-device vfio-pci,sysfsdev=/sys/bus/pci/devices
/0000:00:02.0/<UUID> -append i915.reset=1,1915.verbose_
state_checks=1,drm.debug=0x01,drm.debug=0x02",
"kernel": "/~/1linux/arch/x86/boot/bzImage",
“cpu": 4,
"mem": 2048
}
}

Limitations of the Setup:

Limitation 1: Fuzzing solution with one guest. Even though Syzkaller allows
parallelization with multiple guests for fuzzing, it currently only supports
configuring the same QEMU configuration for all the guests. But we would have
had to attach a different vGPU for every guest that needed to be started as we
can only assign one vGPU to one VM.

Due to lack of time we were only able to explore Syzkaller fuzzing with one

VM due to this challenge. The probable solution would be to use the syz-hub.

Under this we can start multiple syz-manager instances, each provided with one
vGPU for the QEMU instance. Then syz-hub would connect all these instances in
such a way that they can exchange their corpus information, test case information
and reproducers. This is not tested during this thesis.

Limitation 2: Fuzzing solution to fuzz only one device file at a time. We reuse
the description file dev_ig15.txt that was already created and added to Syzkaller. It
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defines all the ioctls for the ig15 driver. But as we reuse the file, the target device
file is declared as /dev/ig15. But the actual ig15 device file names are /dev/cardo
and /dev/renderD128.

The create-image.sh is a helper script to create a minimal Debian Stretch Linux
image. In this script, we add a symlink for /dev/cardo or /dev/renderD128 to /dev/ig15.
This means we can fuzz only one device file out of the two at a time.

Fuzzing

Using the configuration file in 4.2.1.1, we start the fuzzing process to target the
ig15 driver and come across the following challenges:

Challenge 1: After a few hours of the run, fuzzing the ig15 driver causes certain
denial-of-service bugs that hang the GPU and the host system. This leads to the
halting of the fuzzing process as the sys-manager is running on the host and
rebooting is the only way to recover.

Solution 1: We investigate the bugs and find that they are potential denial-
of-service bugs in GVT-g. This prompts to explore the possibility of doing the
following after every fuzz input: (1) restarting the virtualization platform; (2)
resetting the state of the GPU or vGPU; (3) and reloading the host ig15 driver.
Restarting of the virtualization platform is ruled out as it would consume a lot of
time. Therefore, we first try to reset the vGPU by providing the 1915. reset=1 to
QEMU args in the Syzkaller config file. This does not seem to stop the host hangs.
Next, we investigate the possibility of resetting the GPU and the host ig15 driver.

GPU Reset

The following design choices are made to prepare a script to reset the GPU and
the host ig15 driver:

¢ The kernel does not allow to unload the ig15 driver even when the module
dependent on it (kvigt) has been removed and would show the driver
in use. We notice that ig15 driver is attached to the GPU and still running
the X server. Therefore, we stop the X server and detach the GPU before
unloading the ig15 driver. The reloading of the ig15 driver registers the GPU
automatically.

* Even after unbinding the driver from the GPU, the kernel shows that the
ig15 driver is in use. We notice that the unbinding of the driver takes a
significant amount of time. Therefore, we add a wait before the removal of
the ig15 driver. Different times are tested and the minimum time it needed
to unbind is chosen as the wait time.

e If all the commands are run instantaneously, the script fails to reload the
driver or reset the GPU. We observe that since every step is dependent on
the successful completion of the previous step, the script fails if the previous
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step is not yet finished. We add a minimum wait after each step to ensure
that the script runs smoothly.

Following is the script that is used:

#!/bin/bash

echo 1 > /sys/bus/pci/devices/0000:00:02.0/<UUID>/remove //
remove the vGPU
sleep 2
rmmod kvmgt
systemctl stop gdm
sleep 2
echo 1 > /sys/kernel/debug/dri/0/i915_wedged
//reset the GPU state
sleep 2
sh -c "echo -n 0000:00:02.0 > /sys/bus/pci/drivers/i915/unbind"
//unbind the driver from GPU
sleep 30
rmmod 1915
sleep 10
modprobe i915
sleep 2
systemctl start gdm
sleep 2
modprobe kvmgt
sleep 2
sh -c "echo <UUID> > /sys/bus/pci/devices/0000:00:02.0/mdev_supported_types/
1915-GVTg_V5_4/create" //recreate the vGPU
sleep 4

J

Next, we decide when Syzkaller should execute this script. We decide that the
best time to execute the script would be before every time the Qemu instance
is started. By default, a Qemu instance is restarted every one hour assuming
that there have been no crashes. Syzkaller does not provide a documented way
to hook a script before a Qemu instance is launched. Therefore, we modify the
Syzkaller code to call our script before it launches a Qemu instance.

We are able to execute this script successfully in the newer kernel versions
5.11.x and 5.12.x. Therefore, we decide to use 5.11.16 as the host kernel as it is the
same as being used by kAFL on the host.

Challenge 3: As the host X server is being stopped before unloading the ig15
driver, there are no graphics on the screen and it never recovers back.

Solution 3: It is observed that Syzkaller cannot be a child process of a graphical
terminal. Therefore, we either need to run it from text-mode or from a remote-
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shell. We decide to run it from a remote-shell and are able to get the web interface
to view statistics using port forwarding.

Challenge 4: We run into permission issues when we try to run Syzkaller with
the GPU resetting scripts as Syzkaller is running as a user process. QEMU in
Syzkaller is also unable to access the vGPU device due to permission issues.

Solution 4: We run Syzkaller fuzzing campaigns with root access so that Syzkaller
can execute the GPU resetting script that contains privileged commands and
QEMU can attach the vGPU device to the guest.

After resolving the problems, we are able to successfully run 2 fuzzing
campaigns of continuous 48 hours using the same configuration file.

Intel GVT-d
Guest Setup

The following Syzkaller configuration file is used to enable GVT-d configuration
in the QEMU guest for Syzkaller. The QEMU args device allows for the direct
passthrough of the GPU to the QEMU guest as shown in in the Listing 4.2.1.1.

{
"target": "linux/amd64",

"http": "127.0.0.1:56741",

"workdir": "~/gopath/src/github.com/google/syzkaller/workdir",
"kernel_obj": "~/linux/",

"image": "~/image/stretch.img",

"sshkey": "~/image/stretch.id_rsa",

"syzkaller": "~/gopath/src/github.com/google/syzkaller",
“procs": 8,

"reproduce": false,
"type": "qemu",
"enable_syscalls": [
"openat$ig9ls"”,
"ioct1$DRM_IOCTL_I915 x*"
1,
"vm": {
“count": 1,
"gemu_args": "-enable-kvm -cpu host,migratable=off -vga none
-device vfio-pci,host=00:02.0,x-vga=on -append 1915.
reset=1,1915.verbose_state_checks=1,drm.debug=0x01,drm.
debug=0x02, log_buf_len=1M",

"kernel": "~/linux/arch/x86/boot/bzImage",
“cpu": 4,
"mem": 2048

)
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Setbacks

Setback 1: Fuzzing via remote-shell. As the entire GPU is passed through to the
guest, the graphics on the host are disabled. The challenge is to find the best way
to run Syzkaller on the host.

As the graphics are disabled, the text-mode is not supported. Therefore, our
solution is to run the fuzzing campaign via remote-shell and make the web-
interface of Syzkaller available via port-forwarding.

Fuzzing

Using the configuration file in 4.2.1.1, the fuzzing of i915 driver is started and the
following challenges are encountered:

Challenge 1: As the guest now has direct access of the real GPU, we are fuzzing
the native graphics driver. Therefore, chances of causing a hang on the GPU and
host are high, similar to Intel GVT-g configuration. We again observe the hangs
during the fuzzing campaign using GVT-d.

Solution 1: We reuse the solution of GPU resetting discussed in Section 4.2.1.1.
We are able to stabilize the fuzzing campaign using this solution. We observe
similar challenges regarding permission issues for Syzkaller to execute the GPU
resetting script and for QEMU to attach the vGPU to the device. Similar to
the case before, we run the fuzzing campaigns with root to provide necessary
privileges to Syzkaller and QEMU.

We are able to test this fuzzing setup with 2 fuzzing campaigns of continuous
of 48 hours using the same configuration file. This file covers most of the ioctl
interface of ig15 driver.

Isolated Host

Guest Setup

For this setup, we require two machines to run Syzkaller, the source machine X
and the isolated target machine Y. Machine X is equipped with Intel(R) Core(TM)
i5-8250U CPU at 1.60GHz. The machine described in Section 4.1.0.1 is used
as machine Y. The syz-manager running on machine X uses ssh to launch a
fuzzing session in machine Y and monitor the process. The following Syzkaller
configuration file is used on machine X:
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{
"target": "linux/amd64",
"http": "127.0.0.1:56741",
“rpc": "127.0.0.1:0",
"workdir": "~/gopath/src/github.com/google/syzkaller/workdir",
"kernel_obj": "~/linux",
"syzkaller": "~/gopath/src/github.com/google/syzkaller",
"sandbox": "setuid",
"type": "isolated",
"enable_syscalls": [
"openat$i915",
"ioctl$DRM_IOCTL_I915 x"
1,
"vm": {
"targets" : [ "192.168.0.110" 1],
"pstore": true,
"target_dir" : "~/isolated",
"target_reboot" : false
}
}
Fuzzing

We are able to start the fuzzing of ig15 driver on bare-metal but quickly run into
the following challenge:

Challenge 1: The fuzzing process is able to crash the target kernel and the
entire isolated system which leads to the disconnection of SSH between the
syz-manager on machine X and syz-fuzzer on machine Y. Once the manager
loses connection to the machine it is unable to reboot the machine as the system
had crashed.

Tested Solution 1: We test the kdump feature of Linux that captures the kernel
memory image at the time of a crash and then boots another Linux kernel to
preserve the system consistency. But once the kernel crashes the Syzkaller binaries
stop execution and on new kernel boot everything is reset. The syz-manager is
able to reinstate the SSH connection but is left in a waiting state as there is no
syz-fuzzer binary to communicate.

For this setup to work we need to find a way to not loose connection with the
isolated machine in case of a crash, store the crash information and continue
fuzzing. We are not able to research further into this setup during this thesis due
to time constraints.

4.2.1.2  Fuzzing Results

In this Section we present and discuss the findings from fuzzing with Intel GVT-g
and GVT-d configurations. Table 4.1 and Table 4.2 present the findings that are
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discovered during the fuzzing of all i915 ioctls with Syzkaller using the superuser
for GVT-g and GVT-d respectively.

Table 4.1: Findings with GVT-g Configuration

Type of Bug  Total Found

Task Hung 2
Memory Leak 2
Softlockup 1

Table 4.2: Findings with GVT-d Configuration

Type of Bug Total Found
Kernel Bug 24
General Protection Fault 23
Memory Leak 11
WARNING 6
Task Hung 2
Lost connection to test machine 1
Stack Segment Fault 1
KASAN 1

The findings are reported to the relevant ig15 development teams and according
to their feedback these findings are deemed irrelevant as they are found with
the superuser with higher privileges. According to the feedback from the ig15
development team, it is more relevant if the fuzzing is performed with a user
that has restricted access to the ig15 graphics driver interface. This means that
we need to perform fuzzing with a user that does not have the access to all the
privileged ioctls in the driver interface.

We also investigate the bugs on our own in Table 4.1 and Table 4.2 by using the
Syzkaller tool, syz-repro, to automatically minimize the crashing input from the
bug reports and reproduce the bugs. We try to reproduce several bugs but are
unsuccessful in reproducing them after running the tool multiple times. Each run
tails to reproduce after running for 3 hours and times out. We try to reproduce
each bug for 3 days and are unsuccessful. This probably means that the bugs in
Table 4.1 and Table 4.2 are false positives.

Fuzzing with Lesser User Privileges

Based on the feedback received from the ig15 development teams, we decide
to modify the Syzkaller setup to fuzz with a lesser privileged user. Such a
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setup is not documented by Syzkaller. We find that Syzkaller provides a sandbox
mode under which fuzzing can be performed with a nobody user which is an
unprivileged user.

We now perform fuzzing for all i915 ioctls using Syzkaller with the nobody user.
In this case the fuzz inputs are sent to the ig15 driver with the lower privileged
user. We fuzz both the configurations of Intel GVT-g and Intel GVT-d for 2 trials.
Each trial is of continuous 48 hours with the configuration file modified to fuzz
with a lower privileged user. We observe that fuzzing with the nobody user covers
a lower number of ioctls than with the root user. No bugs are reported during
these trials.

4.2.2  kAFL Setup

As kAFL is a proof-of-concept fuzzer and even though there is good
documentation for user-space fuzzing, there is sparse documentation to setup
the fuzzer for Linux kernel fuzzing. Due to this we run into a multitude of
undocumented behaviors. Also, since it is a prototype there were constant
updates to the KAFL versions during this thesis. We try setting up kAFL with the
open-source version first but are unsuccessful due to certain bugs present for the
Linux kernel fuzzing. We then use an unpublished version and with the help of
the kKAFL developer (Steffen Schulz) we setup a working kAFL version.

In this section, we discuss the successful setup. Similar to Syzkaller, the kAFL
setup involves 3 phases: (1) KAFL setup; (2) Guest Setup; and (3)Fuzzing.

In the first phase, we prepare the components required for kAFL:

1. KVM-PT: The KVM-PT module is to be installed on the host kernel.

2. QEMU-PT: The Intel-PT decoder component in QEMU-PT requires the
following libraries:

¢ [ibXDC: It is an Intel-PT decoding library that is built for binary-only
fuzzing purposes. This library assists in speeding up the process of
repeatedly decoding similar traces against the same binary with the
help of a fast runtime cache.

* capstone v4: The libXDX library depends on the multi-architecture
disassembly framework, capstone v4. This version is not included in
many distributions and therefore, needs to be installed.

3. Target Kernel: We compile the target Linux kernel using the default compiler,
gce vo.3.0 for Ubuntu 20.04 and add the same debugging options as the
Syzkaller target kernel.

The working version of kAFL currently supports host Linux kernel v4.19.0 in
the open-source version and v5.11.16 in the unpublished version.
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4.2.2.1  Fuzzing Setup

The second task involves setting up the QEMU guest with virtualization
configurations to fuzz the ig15 driver and creating a simple harness on the guest
for fuzzing. In Section 4.2.2.1 we first describe setting up the guest with the 2
configurations of Intel GVT-g and Intel GVT-d that are possible with kAFL. The
isolated host setup is currently not supported by KAFL. In Sections 4.2.2.1 and
4.2.2.1 we discuss the fuzzing challenges and results faced with each of the
configurations respectively.

Guest Setup

We first install Ubuntu 20.04 as the guest OS, same as the host OS. On the
guest kernel, Kernel Address Space Layout Randomization (KASLR) and spectre
mitigations are turned off. KASLR can prevent the tracing of a particular device
driver module and spectre mitigations can lower the performance significantly.

We modify the kAFL source code to enable GVT-d and GVT-g configuration
for QEMU. We provide a commandline argument for the user to enable either
of the configuration and kAFL can then use the corresponding QEMU args that
were defined.

This setup is successful on both supported host kernel versions for GVI-d
configuration. The GVT-g configuration is successful on kernel v5.11.16.

Harness

To target the fuzzing specifically towards ig15 driver we build a simple kAFL
harness and agent. We follow the stated approach:

¢ Gather knowledge on the structure of inputs required by an IOCTL and
implement a C program that calls this IOCTL with a structured input with
constant values.

* Run this against the host and trace the execution. Ensure that the required
functions are being reached.

* Transfer the logic for KAFL harness with necessary hypercalls.

* Create an agent script that extracts the address range of the ig15 driver and
passes it to the harness where the necessary hypercalls help to register this
range to filter the trace received via Intel PT.

Using this approach, we implement a simple harness that can open the device
file before the snapshot is taken and call the i915 Query ioctl with a structured
input.
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Intel GVT-d Fuzzing

We are unable to start fuzzing the ig15 driver using GVT-d configuration as we
run into kAFL bugs. We do not explore this option further during this thesis.

Intel GVT-g Fuzzing

We are able to successfully start fuzzing the ig15 driver with the simple harness
described in 4.2.2.1 and get some coverage on the ig15 driver. There are no
interesting findings during this fuzzing campaign.

Limitations of the setup

Limitation 1: Fuzzing solution with one guest. Similar to Syzkaller, KAFL allows
parallelization with multiple guests for fuzzing, but it also currently only supports
configuring the same QEMU configuration for all the guests.

4.3 COMPARABLE EXPERIMENTAL SETUPS

Syzkaller is a stateful fuzzer that incorporates significant amount of technical
knowledge of the target by describing the valid target’s syscall interface. In
theory, this approach can definitely lead to more code coverage even without any
feedback than kAFL that has no idea how to generate a valid syscall and has to
learn it overtime while sending unstructured random data. This prevents KAFL
from triggering interesting paths in the earlier stages of fuzzing and a lot of time
is expected to be used on learning the structure of a valid syscall.

One of the goals of this thesis is to provide a performance comparison between
Syzkaller and kAFL in fuzzing the ig15 driver. The above mentioned complication
prevents us from providing a fair performance comparison between the two
fuzzers. To tackle this, we leverage the freedom of the KAFL harness by creating
a clever harness that has the knowledge of the valid syscall structure.

We design our KAFL harness to implement the syscall fuzzing logic similar
to Syzkaller. The harness is modeled on the basis of the ig15 description file of
Syzkaller. This aims to eliminate the advantage of Syzkaller’s prior knowledge of
the valid syscall structure and bring the fuzzers on the same level.

In the upcoming sections, we first describe how a Syzkaller program is
generated for the ig15 device driver. Then we describe the different versions of
harnesses implemented. We also present an overview of the similarities and
differences between the Syzkaller and new kAFL setup.

4.3.1  Syzkaller i915 programs

To create a syscall logic similar to Syzkaller for the ig15 driver, we analyze the
ig15 description file of Syzkaller and the inputs that are generated in a 1 hour
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time period while fuzzing the ig15 driver with the same description file. This

gives us an idea as to what kind of inputs we want the kAFL harness to generate.

After anaylzing the Syzkaller inputs and the description file, we finalize the
mechanism that would be required for KAFL harness and following are the
features that need to implemented:

1. The ioctl definitions, data structures and flags need to be defined in the
harness similar to the ones defined in the description file. This will provide
the valid ioctl structure to kKAFL.

2. According to Syzkaller, the openat ioctl needs to be enabled by the user as it
provides the necessary resource for the following syscalls. We also observe
that in the description file openat is defined with 3 constant arguments and
one variable. Therefore, there should be atleast one openat ioctl with the
similar arguments.

3. The program can start with an openat ioctl or with some other enabled ioctl.

In such a case:

* The other ioctl will get a special value Oxffffffffffffffff (-1) for
"no file descriptor"”

* With high probability the program should start with a valid openat as
described above.

4. The harness should keep a list of all the file descriptors (fd) that have been
returned by every openat in a program. The syscalls will be provided a fd
which exists in this list at that point in time.

Following are two sample fuzz inputs that encompass the above mentioned
features:
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Listing 4.1: program start with openat ioctl

openat$i9l5 (Oxffffffffffffff9c, Ox20000300, 0x0, 0Ox0)

openat$i915=0x3 errno=14 cover=1345

openat$i915 (Oxffffffffffffffic, 0x20002d40, O0x0, 0x0)

openat$i915=0x4 errno=14 cover=1367
10ct1$DRM_IOCTL_I915_GEM_EXECBUFFER2 (0x4, 0x40406469, 0x20002e00)
1i0Cct1$DRM_IOCTL_I915 GEM_EXECBUFFER2=0Oxffffffffffffffff errno=25 cover=130
10Cct1$DRM_IOCTL_I915 GEM_EXECBUFFER2(0x4, 0x40406469, 0x20000240)
10ct1$DRM_IOCTL_I915_GEM_EXECBUFFER2=0xffffffffffffffff errno=25 cover=130
openat$i9l5 (oxffffffffffffff9c, Ox0, 0x0, 0x0)
openat$i9ls=0xffffffffffffffff errno=14 cover=617
1i0ct1$DRM_IOCTL_I915_GEM_EXECBUFFER2(0x3, 0x4611, 0x0)
10ct1$DRM_IOCTL_I915_GEM_EXECBUFFER2=0x0 errno=14 cover=14855

Listing 4.2: program start with another enabled ioctl

10ct1$DRM_IOCTL_I915_GEM_GET_CACHING(Oxffffffffffffffff, Oxc0086470, 0O
x20000000)

10ct1$DRM_IOCTL_I915_GEM_GET_CACHING=0xffffffffffffffff errno=9 cover=55

openat$i9l5(Oxffffffffffffff9c, Ox20000040, Ox1, 0Ox0)

openat$i915=0x3 errno=14 cover=1362

10ct1$DRM_IOCTL_I915 GEM_CONTEXT_CREATE(0x3, 0xc008646d, 0x20000080)

10Cct1$DRM_IOCTL_I915_GEM_CONTEXT_CREATE=Oxffffffffffffffff errno=25 cover
=130

openat$i9l5 (Oxffffffffffffff9c, Ox200000cO, 0x80242, 0x0)

openat$i915=0x4 errno=14 cover=1579

1i0ct1$DRM_IOCTL_I915_PERF_ADD_CONFIG(Oxffffffffffffffff, 0x40486477, 0O
x20000100)

10ct1$DRM_IOCTL_I915_PERF_ADD_CONFIG=0Oxffffffffffffffff errno=9 cover=55

10ct1$DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM(0x3, 0xc0186474, 0x20000180)

10ct1$DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM=Oxffffffffffffffff errno=25 cover
=130

1i0Cct1$DRM_IOCTL_I915 PERF_REMOVE _CONFIG(0x3, 0x40086478, 0x200001c0)

10ct1$DRM_IOCTL_I915_PERF_REMOVE_CONFIG=0Oxffffffffffffffff errno=25 cover
=130

openat$i9l5 (Oxffffffffffffff9c, Ox20000200, 0x60040, 0x0)

openat$i9ls=xffffffffffffffff errno=40 cover=1235

i0ct1$DRM_IOCTL_I915_PERF_ADD_CONFIG(Oxffffffffffffffff, 0x40486477, 0O
x20000240)

1i0ct1$DRM_IOCTL_I915_PERF_ADD_CONFIG=0xffffffffffffffff errno=9 cover=55

1i0ct1$DRM_IOCTL_I915_GEM_THROTTLE(Ox4, 0x6458, 0x0)

10ct1$DRM_IOCTL_I915_GEM_THROTTLE=0xffffffffffffffff errno=25 cover=130

openat$i9l5 (oxffffffffffffff9c, Ox20000380, 0x80, 0x0)

openat$i915=0x5 errno=14 cover=1335
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4.3.2 kAFL Harness Implementation

During this thesis we are able to implement 3 ioctls in the harness due to time
constraints. The following ioctls are implemented:

1. OPENAT: This syscall is important as it is required to open the device file

and target the ig15 driver. As stated earlier, Syzkaller also requires this ioctl
to be enabled and since we wanted to make the logic similar to Syzkaller,
this ioctl is included.

. QUERY: This ioctl is implemented first as it was an easier target to
understand the working of the i915 driver. It is used to query the following
information:

* Topology Info

e GPU Engine Info

¢ Perf Config

. EXECBUFFER2: This ioctl is chosen after observing the findings via fuzzing
the ig15 driver with Syzkaller. Also, it is a complex ioctl that manages the
user command execution on the physical GPU. This ioctl performs the
following tasks to handle user command execution:

* Validates the user-space input like pointers handles and flags.

* Reserves GPU address space for buffer objects that contain the user
commands

* Relocates the buffer objects in the address space, if required.
* Serializes the user request according to its dependencies

* Constructs a request to execute a batchbuffer which is a chain of buffer
objects.

o Submits the batchbuffer for the GPU to execute. This means all the
user commands are submitted to the GPU buffer which the GPU is
reading.

More details into the working of the ioctl are out of scope of this thesis.

Please refer the source code of the i915 driver for more details [30].

4.3.2.1  First implementation

Now, we describe the first implementation of the kAFL harness. This
implementation includes all the features that are discussed in Section 4.3.2.
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Algorithm 2 First Harness Implementation

1: function MAIN

2: kAFL Handshake using KAFL_ACQUIRE and KAFL_RELEASE
3: while true do

4: payload < KAFL_GET_PAYLOAD()

5: KAFL_ACQUIRE()

6: RANDOMIZE_SYSCALLS(fd, payload)

7: KAFL_RELEASE()

8: function RANDOMIZE_SYSCALLS(payload)

9: Program: P
10: filedescriptors <+ 0
11: Choose ioctls to be included

12: repetitions < Get number for each included ioctl from the payload
13: if P begins with openat ioctl then

14: P < add openat

15: P < Add next ioctls according to repetitions

16: Choose order of run of ioctls after openat

17: else

18: P <~ Add query or execbuffer2 according to repetitions
19: P < add openat
20 P < Add next ioctls according to repetitions
21: Choose order of run of ioctls after openat
22: Execute P

We first create a test harness that calls each of the 3 ioctls with custom values,
execute it on the host and ensure that we are able to reach the required ioctl
functions. We then transfer the logic of these test harnesses to the kKAFL harness.

After the fuzzer submits a payload buffer we are able to call our program with
a sequence of ioctls. We use the byte and bit values of the payload buffer to make
decisions required to generate an input program. We will refer to our decision
making mechanism as payload mechanism from now onwards.

Following is the incremental approach we take to build the harness that is
presented in Algorithm 2:

* Step 1: After the payload buffer is generated, we pass the payload directly
to the data structures of the ioctl and then we call the ioctl. This is initially
done in 3 iterations, one for each of the 3 ioctls to ensure we are getting the
right coverage.

* Step 2: A service randomize_syscalls is created that chooses the ioctls as part
of a program and calls them in an order. Following are the decisions taken
using the payload mechanism:

— Whether the ioctl has to be added to the program or not.
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— The number of times the chosen ioctl is to be added in a program.
— The order in which the ioctls are to be called.

With this service we are able to create programs with a sequence of ioctls
and differing orders of execution.

¢ Step 3: In this step, we implement the service that decides whether the
program starts off with an openat ioctl or another enabled ioctl. We give
90% probability to openat as we observe high probability of this case in
Syzkaller input generation.

* Step 4: The last feature addition is to keep track of all the unique file
descriptors that are returned when multiple openat ioctls are executed in a
program.

Results and Challenges: We are able to start the fuzzing campaign with the
GVT-g configuration but we run into a potential memory corruption bug on the
host. This bug is found to be an unresolved known bug. We responsibly disclose
it to the Intel Security Team. Without resolving this bug, this harness cannot be
tested further.

On inspection, it is a potential memory corruption bug in GVT-g that interrupts

the fuzzing process and is generated on enabling the openat ioctl in the harness.

The bug is not encountered immediately when the fuzzing process is started
instead it builds up over a few minutes. We observe a gvt:guest page write

error in the host syslog for every openat ioctl executed before it leads to a gvt:

vgpu 1: fail error on the host. Unfortunately, the Linux team is not able to fix
the bug during the ongoing of the thesis so we decide to modify the harness to
work around the bug.

4.3.2.2  Second implementation

In this section we present our second try at implementing the KAFL harness. As
the bug mentioned in Section 4.3.2.1 is being triggered due to openat ioctls, we
first try to reduce the number of openat in the fuzz inputs. We try this approach
in two different ways:

Approach 1: We reduce the number of openat to maximum of 2 times in one
input program. The other parts of the harness remain unmodified.

Results and Challenges: We run into the exact same bug experienced with the
first implementation as discussed in Section 4.3.2.1.

Approach 2: We then try to reduce the number of openat by calling the first
openat with all valid arguments before the snapshot is taken. This means when a
snapshot is restored, the ig15 device file already has one valid file descriptor. The
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second openat ioctl is called after the snapshot is restored. The other parts of the
harness remain unmodified.

Results and Challenges: We run multiple fuzzing campaigns and every time
we run into same bug as discussed in Section 4.3.2.1 after an average run of 6
hours. This means that we are able to reduce the load on the Intel GVT-g. Using
this approach means that the harness cannot generate inputs that can start with
query or execbuffer2. Also, the openat ioctl at the start of each program will have
all valid arguments.

4.3.2.3 Third implementation

Unfortunately, the above result means we have to try and remove the second
openat ioctl after the snapshot is restored. This means we now only have one
valid openat ioctl before the snapshot is taken. This means we will only have a
valid file descriptor to fuzz the other ioctls. To overcome this we make a constant
addition to the list of file descriptors with (-1) so that with low probability, the
other ioctls can also be fuzzed with this file descriptor. The other parts of the
harness remain unmodified. A simple algorithm of the final harness is presented
in Algorithm 3

Results and Challenges: We are able to run stable fuzzing campaigns with
this harness and do not run into any bugs. We use this setup for the quantitative
evaluation of the fuzzers.

Algorithm 3 Final Harness Implementation

1: function MAIN
kAFL Handshake using KAFL_ACQUIRE and KAFL_RELEASE
while true do

payload < KAFL_GET_PAYLOAD()

fd < OPENAT()

KAFL_ACQUIRE()

RANDOMIZE_SYSCALLS(fd, payload)

KAFL_RELEASE()

9: function RANDOMIZE_SYsCALLS(fd, payload)

10: Program: P

11: filedescriptors « [fd,-1]

12: Choose ioctls to be included

13: repetitions <— Get number for each included ioctl from the payload
14: Add ioctls according to repetitions

15: Choose order of run of ioctls after openat

16: Execute P
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4.3.3 Syzkaller Harness

In this Section, we present the configuration file that is used to restrict the
Syzkaller fuzzing for the 3 ioctls that we implemented in the kAFL harness. The
file is listed in Listing .

{

"target": "linux/amdés",
"http": "127.0.0.1:56741",
"workdir": "~/gopath/src/github.com/google/syzkaller/

workdir_final second",

"kernel_obj": "~/kernel_sources/linux-5.10.52/",
"image": "~/image/stretch.img",
"sshkey": "~/image/stretch.id_rsa",

"syzkaller": "~/gopath/src/github.com/google/syzkaller",
"procs": 8,
"type": "qemu",
"reproduce": false,
"enable_syscalls": [
"openat$ig1s",
"ioctl$DRM_IOCTL _Ig15 GEM_EXECBUFFER2",
"ioct]\$DRM_IOCTL, Ig15 QUERY"
1,
"vm": {
"count": 1,
"gemu_args": "—enable-kvm —cpu host, migratable=off —vga none
—device vfio—pci,sysfsdev=/sys/bus/pci/devices
/0000:00:02.0/ <UUID> —append i915.reset=1,i915.
verbose_state_checks=1,drm.debug=oxo1,drm.debug=ox02",
"kernel": "~/kernel_sources/linux—5.10.52/arch/x86/boot/
bzImage",
"cpu": 4,
"mem": 2048

"cover_filter": {
"files": ["Adrivers/gpu/dm/ig15"]
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With different potential choices of fuzzing solutions available, it is often difficult
for potential users to identify which platform and configuration is best suited
according to their requirements. Therefore, based on the comparable setup as
described in Section 4.3 and our findings while setting up the fuzzing solution,
we present a qualitative and a quantitative (performance) analysis of the fuzzers
and the fuzzing options in this Chapter.

This chapter is organized as follows - We start with the qualitative analysis
presented in Section 5.1. Then, in Section 5.2 we present the performance analysis
of the comparable setups that help us evaluate the efficiency and effectiveness of
both the fuzzers with ig15 driver as the target.

5.1 QUALITATIVE ANALYSIS

We would like to recall the first two research questions listed in Section 5.3 and
aim to answer them as follows:

RQ1: Which of the two fuzzing tools, Syzkaller or kAFL, is better suited for
large-scale driver validation?

In this Section, we aim to answer this question by performing a qualitative
analysis of the usability and versatility of the two fuzzers.

RQz: Which of the different fuzzing solutions explored is better suited for large-
scale driver validation?

In this Section, we aim to answer this question by performing a qualitative
analysis of the crash-tolerance and cost-effectiveness and the effort required for the
fuzzing solutions.

Table 5.1 presents the summary of the qualitative analysis that is performed
during this thesis. The analysis is covered into two parts: (1) Qualitative Analysis
of the Fuzzing Tools and (2) Qualitative Analysis of the Fuzzing Solutions.

In evaluating the fuzzers for usability, we find that KAFL does not require
the user to compile the target kernel whereas Syzkaller requires it and it can
be time consuming. But the technical knowledge required to implement the
KAFL harness is high whereas for Syzkaller it is moderate. The user-interface
of Syzkaller for coverage achieved is user-friendly to use whereas for kAFL the
user needs to be skilled at binary analysis to use the provided Ghidra plugin to
view the coverage achieved. Under versatility, we find that kKAFL can provide an
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OS-agnostic solution which is a desirable feature for large-scale driver validation.
On the other hand, Syzkaller supports a bare-metal fuzzing option unlike kAFL.
In our evaluation of the fuzzing solutions, for both the fuzzers we are able to set
up and test the GVT-g configuration. This is a desirable feature with maximum
cost-effectiveness out of the other solutions.

Syzkaller kAFL
GVT-g GVT-d Isolated GVT-g GVT-d
Fuzzing Tools
Usability Target Kernel Linux with compile-time instrumentation Off-the-Shelf kernels supported
Technical Knowledge medium high
User-Interface Web-Interface, annotated source Real-time GUI, Ghidra Plugin
Versatility 0OS-Agnostic No yes
Hardware Access Bare-metal or virtualized target system Virtualized target systems
Fuzzing Solution
Crash-Tolerant yes yes no yes* Not tested
Cost-Effective maximum moderate moderate maximum moderate
Technical Knowledge moderate moderate minimum moderate moderate

Figure 5.1: Summary of Qualitative Anaylsis

In the upcoming Sections, we present a detailed analysis. The analysis is
covered in two sections, Section 5.1.1 discusses the qualitative analysis of the
fuzzing tools and Section 5.1.2 discusses the qualitative analysis of the fuzzing
options.

5.1.1  Qualitative Analysis of the Fuzzing Tools

To effectively analyze the two fuzzing tools, Syzkaller and kAFL, for deployment
in large-scale ig15 driver validation, we identified two metrics that we would
like to evaluate them for: usability and versatility. For each metric we raise certain
research questions that we aim to answer from the analysis as follows:

Usability

RQ1.1: How much effort is required to set up the fuzzer to fuzz the ig15 graphics
driver?

RQ1.2: How well does the fuzzer present the results for human consumption?
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Versatility

RQ1.3: What are the constraints introduced by the fuzzer to fuzz the ig15 graphics
driver?

Now, we answer these questions with the qualitative analysis of the fuzzing
tools, Syzkaller and kAFL.

RQ1.1: How much effort is required to set up the fuzzer to fuzz the igis
graphics driver?

Target Kernel: Syzkaller requires you to compile the Linux kernel before fuzzing
because it uses compile-time instrumentation, kcov, which is not enabled by
default. Compiling the kernel requires technical skills and is time consuming.

For kAFL on the other hand, it is not necessary to compile the kernel as it uses
hardware-assisted coverage and does not rely on OS modules for coverage. The
user can directly fuzz an off-the-shelf kernel image and hence, in such a case no
effort is required to prepare the target kernel.

Technical Knowledge: The suitable fuzzer should require minimal technical
knowledge to deploy. Both fuzzers have an easy-to-follow installation process
documented. The difficulty lies in setting up the harness. In Syzkaller the user
needs to define a description file using the Syzkaller grammar, syzlang. This file
is used to define the interface of the target. If the description file is not already
defined to the user’s requirements, the user needs to write their own description
file. To write this file the user needs to have the knowledge of the target interface
and the required data arguments. But if the description file has been defined
in the Syzkaller code, the user does not need to create a new description. The
Syzkaller code needs to be rebuilt every time a change is done to the description
file or a new file is added. This can be a cumbersome process. During this thesis
we do not set up a harness for Syzkaller as we reuse the ig15 description file that
is already defined.

For kAFL, the user needs to write a harness for the fuzz target. The kAFL
harness is highly customizable and can for example, define the driver interface,
create fuzz inputs and call the required ioctls. But writing a harness for the
entire target interface is time consuming. To create an effective harness the user
requires an in-depth knowledge of how the target interface is working and the
dependency of the target ioctls on other ioctls for system resources. We spent a
significant amount of time on understanding the driver interface and creating the
harness for three ioctls during this thesis.

RQ1.2: How well does the fuzzer present the results for human consumption?
User Interface: Syzkaller provides a web interface that displays the statistics

of the fuzzing run, as shown in Figure 5.2. The coverage is displayed in another
web interface as shown in Figure 5.4 and the user is able to see detailed coverage
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per file in the Linux kernel. The edges covered by Syzkaller are annotated on
the source code files that are displayed. The only drawback is that both the web
interfaces need to be refreshed manually to update the results.

kAFL provides a real-time tracking graphical user interface (GUI) to keep
track of the statistics shown in Figure 5.3 that requires no refreshing. To display
the coverage KAFL provides a Ghidra plugin which requires the user to first
import the Linux kernel binary. Ghidra is an open-source reverse engineering tool.
Importing the kernel image for the first time to ghidra can be time consuming
as the software analyzes the binary for all the symbols. Next, the user needs to
provide the list of edges to the plugin script before executing it. After running
the script, Ghidra annotates the edges covered or uncovered on the disassembled
binary code, as shown in Figure 5.5. Ghidra provides a rough decompilation of
the binary and the user can map the decompiled code to the disassembly. This
means that the user needs to be be skilled at binary analysis to understand the
results. We observe that more manual labor is required to analyze the kAFL

coverage
Stats:

revision 6eba14c3
config
uptime 4m10s
fuzzing 7mo0s
corpus &
triage queue 0
cover 579
signal 567
syscalls 1564
crash types 1 (16/hour)
crashes 1 (16/hour)
exec candidate 0 (0/hour)
exec fuzz 0 (0/hour)
exec gen 23 (376/hour)
exec hints 0 (0/hour)
exec minimize 483 (131/min)
exec seeds 0 (0/hour)
exec smash 0 (0/hour)
exec total 560 (152/min)

exec triage
executor restarts
new inputs
rotated inputs
suppressed

vm restarts

54 (14/min)
23 (376/hour)
3 (49/hour)
0 (0/hour)
0 (0/hour)
3 (49/hour)

Crashes:

Description Count Last Time Report
Log:
2020/03/09 12:00:49 VMs 1, executed 44, cover 0, crashes 1, repro 0
2020/03/09 12:00:59 VMs 1, executed 44, cover 0, crashes 1, repro 0
2020/03/09 12:01:04 fuzzer vm-1 connected
2020/03/09 12:01:09 VMs 2, executed 60, cover 0, crashes 1, repro 0
2020/03/09 12:01:19 VMs 2, executed 79, cover 0, crashes 1, repro 0
2020/03/09 12:01:29 VMs 2, executed 115, cover 0, crashes 1, repro 0
2020/03/09 12:01:39 VMs 2, executed 141, cover 0, crashes 1, repro 0
2020/03/09 12:01:49 VMs 2, executed 178, cover 0, crashes 1, repro 0
2020/03/09 12:01:59 VMs 2, executed 196, cover 0, crashes 1, repro 0
2020/03/09 12:02:09 VMs 2, executed 232, cover 0, crashes 1, repro 0
2020/03/09 12:02:19 VMs 2, executed 257, cover 0, crashes 1, repro 0
2020/03/09 12:02:29 VMs 2, executed 287, cover 3, crashes 1, repro 0
2020/03/09 12:02:39 VMs 2, executed 320, cover 3, crashes 1, repro 0
2020/03/09 12:02:49 VMs 2, executed 352, cover 3, crashes 1, repro 0
2020/03/09 12:02:59 VMs 2, executed 389, cover 3, crashes 1, repro 0
2020/03/09 12:03:09 VMs 2, executed 421, cover 6, crashes 1, repro 0
2020/03/09 12:03:19 VMs 2, executed 467, cover 6, crashes 1, repro 0
2020/03/09 12:03:29 VMs 2, executed 497, cover 6, crashes 1, repro 0
2020/03/09 12:03:39 VMs 2, executed 528, cover 6, crashes 1, repro 0
2020/03/09 12:03:49 VMs 2, executed 560, cover 567, crashes 1, repro 0

Figure 5.2: Syzkaller Statistics Interface
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[KAFL v0.2 ]

Runtime: #Execs: 401.7K Stability: s Slaves:
CurExec/s: 26 Funkiness: CPU Use:
Progress: AvgExec/s: 39 Timeouts: 6 Mem Use:

Path Info: Bitmap Stats: Finding

Total: Crash: (N/A) None Yet
Seeds: Edges: 292 AddSan: (N/A) None Yet
Favs: Blocks: 757 Timeout (N/A) None Yet
Norm: p(col): 0.4% Regular: ; (N/A) 1m57s

Yld: Init: Grim: 0 Redq: ) 0 Hvc:
Fav: Init: Rq/Gr: p Det: 1 Hvc: ) Fin:
Nrm: Init: € Rq/Gr: p Det: 3 Hvc: 1 Fin:

ave afl_havoc | node: 68 | fav/lvl: 5/ 2 | exec/s:

[Payload Info]
| Size: 8B \ Perf: 0.03ms | Score: 85 | Fuzzed: 0hoom |

0x0000000: 15 30 49 1a 1d 75 80 68

Figure 5.3: KAFL GUI Interface

acpr RPN
> ata of 6088
» base of 8240
1915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
P black of 601 struct drm_file *file)
» cdrom of 684 |
» char of 2432 struct drm_i915 private *i915 = to i915(dev);
» ck of 2380 struct drm_i915 gem execbuffer2 *args = data;
» clocksource of 22 struct drm_i915_gem exec_object2 *exec2 list;
const size t count = args->buffer_count;
> cnn?ecmr ?fzgég int err;
b cpufreq of
» cpuidle of 465 if (!check buffer count(count)) {
drm_dbg(&i915->drm, “exechuf2 with %zd buffers\n”, count);
» dma of930
return -EINVAL;
» dma-buf of 1714 ¥
» firmware of 817
‘T 9% of 64403 err = i915_gem_check_execbuffer(args);
¥ dm 9%  of64074 Hotern) o errs
» bridge of 43 ’
¥ 915 10% of 50454 /* Allocate extra slots for use by the command parser */
» display 2% of 24055 exec2 list = kvmalloc_array(count + 2, eb element size(),
v 6% of 5186 GFP_NOWARN T GFP_KERNEL);
gem o if (exec2_list == NULL) {
i915 gem busy.c 43% of 68 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n”,
915 gem X 11% of 48 count);
915_gem_client_blt.c - of 111 } return -ENOMEM;
915 gem context.c 37% of 1044 1 (eo .
> py_from user(exec2_list,
1915 gem contexth 100% of 1 ub4_to_user_ptriargs-»buffers_ptr)
1915_gem_dmabuf.c E of 96 sizeof(*exec2 list) * count)) {
915 gem domain.c 57% of 282 drm_dbg(&i915->drm, “copy %zd exec entries failed\n", count);
915 gem execbuffer.c 46% of 1218 KV{\?E(E:?ELPSU;
I o return - ;
513 Sem el G o '
915_gem_lmem.c - of 5 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
i915 gem mman.c 27% of334
915 gem object.c 21% of 182 /:
1915 gem ob 100% of L * Mow that we have begun execution of the batchbuffer, we ignore
e . R any new error after this point. Also given that we have already
1915_gem_object_blt.c - of 190 * updated the associated relocations, we try to write out the current
915 gem pages.c 58% of 212 * object locations irrespective of any error.
1915_gem_phys.c of 71 =/
1915_gem_pm.c of 38 if (args-=flags & _ EXEC_HAS RELOC) {
1915£Em7p ion.c of 42 struct drm_ 1915 gem exec object2 _ user *user exec_list =
Wgem sh%ﬁc Dot of 173 u64_to_user_ptr(args->buffers_ptr);
1915 gem shmem.c unsigned int i;
915 gem shrinker.c 12% of 145 9
915 gem stolen.c 19% of 150 /* Copy the new buffer offsets back to the user's exec list. */
1915 gem throude.c 60% of 81 *
915 gem iling.c 1% of 167 * Note: count * sizeof(*user exec_list) does not overflow,
WEWPM T o242 + because we checked ‘count’ in check buffer count().
915 gem wait.c 42% of 217 + And this range already got effectively checked earlier
1915_gemfs.c - of 6 * when we did the "copy from user()" above.
> gt 13% of 8043 f o ” begin Lot
" . if (luser_write_access_begin(user_exec_list,
pi;:ﬁ ‘;;Zf,/ °ng? count * sizeof (*user_exec list)))
e % goto end;
1915_buddy.c of 78
1915 cmd parser.c 24% of 220 .| for (i = 0; i< args->buffer_count; i++) {

Figure 5.4: Syzkaller Coverage Interface
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Figure 5.5: Ghidra as kAFL Coverage Interface

RQ1. 3: What are the constraints introduced by the fuzzer to fuzz the ig15
graphics driver?

OS-Agnostic: While setting up a fuzzing solution for the ig15 driver, it is
beneficial if the solution is scalable to different OSes. This helps in the acceptance
of one solution for large-scale driver validation across all OSes instead of using
OS-specific solutions.

Syzkaller relies on the kernel kcov for coverage feedback, therefore, it is unable
to support other OSes that are not Unix-like systems like Windows. The current
Windows support from Syzkaller is at early stages and is only supported on
Google Compute Engine (gce) guests at the time of writing this thesis. This is a
huge drawback for deployment in a large-scale driver validation.

On the other hand, KAFL uses hardware-assisted feedback mechanism, that
makes the fuzzer OS-independent. Therefore, it is possible for kAFL to provide
an OS-agnostic solution which is a favorable feature.

Hardware Access: To fuzz the i915 device driver, the fuzzer needs to be able to
access the GPU. Syzkaller and kAFL allow different fuzzing options to access the
hardware. The options allowed by each fuzzer are summarized in Table 5.1

Table 5.1: Hardware Access Configurations
Syzkaller kAFL

GVT-g v v
GVT-d v v
Isolated v X

We are able to integrate GVT-g and GVT-d configurations for the guest machine
in Syzkaller. We can successfully run fuzzing campaigns for atleast 48 hours
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for each configuration. We are able to retrieve ig15 coverage and find bugs in
the driver. Syzkaller also supports an Isolated Host Setup that seemed like a
promising setup to fuzz the ig15 driver on the bare-metal. We are able to start the
fuzzing process with this setup but it turned out problematic in case of system
crashes.

With kAFL as well, we are able to integrate GVT-g and GVT-d configurations for
the guest machine. With the GVT-g configuration, we can successfully run fuzzing
campaigns for atleast 48 hours against the ig15 driver and retrieve coverage. With
GVT-d we currently run into KAFL bugs that have been reported during this
thesis but not yet fixed. Once fixed, this configuration can be tested in the future
as a potential choice for fuzzing the ig15 driver. KAFL does not currently support
the fuzzing option to fuzz on the bare-metal.

In this analysis, we can conclude that each fuzzer has atleast one fuzzing
option to successfully fuzz the ig15 driver at the time of writing this thesis. In the
future it might also be interesting to explore SR-IOV, discussed in Section 3.3.4,
as another driver fuzzing option once it becomes available.

5.1.2  Qualitative Analysis of the Fuzzing Solutions

In this analysis we aim to analyze the different fuzzing options with the two
fuzzers for the ig15 graphics driver. For this analysis we have identified three
metrics that we would like to evaluate: crash-tolerance, cost-effectiveness and the
effort required. We raise a research question for each metric as follows:

Crash-Tolerance

RQ2.1: Is the fuzzing option able to handle the consequences of the
non-deterministic kernel and the stateful hardware?

Cost-Effectiveness

RQz2.2: Is the fuzzing option cost-effective for deployment at large-scale ig15
driver validation?

Effort Required

RQ2.3: What are the constraints introduced by the fuzzer to fuzz the ig15 graphics
driver?
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Now, we answer these questions with a qualitative analysis of the fuzzing
solutions.

RQz.1: Is the fuzzing option able to handle the consequences of the non-
deterministic kernel and the stateful hardware?

One of the major challenges in fuzzing the device driver is dealing with the
impacts of non-deterministic kernel and stateful hardware. One possible impact is
that a kernel bug or a device hang can cause the entire system to crash during the
fuzzing process, as discussed in Section 3.1.2. Therefore, it is important to us that
the fuzzing solution can handle this challenge. We now document our findings
on how the fuzzers overcome the challenges for each of the configurations:

1. Syzkaller and GVT-g: We face system crashes as expected while fuzzing the
ig15 driver with this configuration using a single guest machine. We are able
to resolve this by resetting the GPU and reloading the host driver to clear
their states before Syzkaller launches a Qemu instance. We are successful
to get Syzkaller with the GVT-g configuration to run continuously without
crashing the system. With this fix, in the future this setup can potentially be
scaled up to fuzz the ig15 driver in parallel using multiple guest instances
because GVT-g supports multiplexing of the GPU.

2. Syzkaller and GVT-d: We face system crashes as expected while fuzzing the
driver in one guest and are able to again resolve this using the same solution
as used for GVT-g. With our fix, this setup can now be used to fuzz the
ig15 driver over extended periods of time. In the future, with this modified
version of Syzkaller, this setup can be tested for fuzzing the ig15 driver in
multiple guests using the syz-hub tool provided by Syzkaller.

3. Syzkaller and Isolated: While fuzzing the ig15 driver in this configuration,
system crashes are observed but we are unable to find a solution to recover
or even store the state of the crash. In the future it would be interesting
to find a solution to somehow retain the crash information, recover from
the crash while maintaining connection with the syz-manager running on
the remote machine. This can be a promising setup to fuzz the ig15 driver
because it does not introduce an extra virtualization layer and thus, most
closely resembles real world scenarios.

4. kAFL and GVT-g: We are able to run this setup to fuzz the ig15 driver with
one guest instance. But with certain targets we run into system crashes for
which we are unable to find a solution during this thesis, as discussed in
Section 4.3.2.1. In kAFL, snapshot reloading sets the guest back to an initial
state but that does not help. As the harness is executing the inputs on the
guest, we are not able to use our previous solution of resetting the host
driver and GPU as we are unsuccessful to switch back to the host from
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inside the harness running in the guest. We are still able to run a successful
and stable fuzzing campaign by avoiding certain syscalls as a fuzz target.

5. kAFL and GVT-d: We are unable to test this setup for fuzzing because of

existing bugs in kAFL which have been disclosed to the kAFL developers.

Once these bugs are fixed it would be interesting to evaluate this options.

After exploring the different fuzzing options, we find GVT-g to be a good
solution to run a crash-tolerant fuzzing campaign on both the fuzzers as it can
potentially be upscaled to fuzz the ig15 driver in parallel using multiple guests in
the future.

RQz.2: Is the fuzzing option cost-effective for deployment at large-scale ig15
driver validation?

The fuzzing configurations that we test have different costs associated to them.

Intel GVT-g has the potential to have the lowest parallelization costs. It can be
used to parallelize the fuzzing process by sharing the hardware resource across
the multiple guests. This is possible if the fuzzers can provide the capability to
have separate gemu configurations for each guest.

Intel GVT-d and Isolated have direct access of the hardware and hence, do not
support parallelization. But it can be possible on the fuzzer side to parallelize
the fuzzing process across multiple machines. But this increases the additional
hardware costs for a large-scale driver validation. Syzkaller’s syz-hub is not tested
during this thesis which can be a possible solution.

RQ:2.3: How much effort is required to set up the fuzzing option?

In this section we discuss the technical knowledge required for setting up the
different fuzzing options. The user is required to have some knowledge of the
GPU pass-through techniques to setup Intel GVT-g and Intel GVT-d. The steps to

setup can differ depending on the type of hardware used and the host OS used.

But once the steps are clear, the process can be easily automated on machines
with similar specs. On the other hand, isolated setup requires the user to only
know how to setup the configuration file for Syzkaller.

5.2 QUANTITATIVE ANALYSIS

In Section 5.1, we conclude that both Syzkaller and kAFL are capable of fuzzing
the ig15 graphics driver with GVT-g configuration. We also note that Syzkaller
only supports Unix-like OSes, which excludes the Windows OS. We also see that
kAFL provides an OS-agnostic solution. Therefore, KAFL is a possible candidate to
fuzz the Windows graphics drivers. Besides that, kAFL also supports a potentially
much faster guest snapshot feature than Syzkaller’s fuzzing which relies on full
guest reboots.

73



74

EVALUATION

In Section 4.3, we discussed that kAFL is lacking the knowledge of the the driver
interface unlike Syzkaller. This means Syzkaller will achieve higher coverage in
lesser time than kAFL. This leads us to the following research questions listed in
Section 5.3:

RQ3: To compensate for the lack of knowledge of the syscall structures in kAFL,
can we write a more clever harness and get similar coverage for the i915 graphics
driver?

RQy4: Can we use kAFL as an alternative to Syzkaller for graphics driver fuzzing?

To answer these questions, we first create a clever harness that implements
the input generation logic similar to syzkaller as described in Section 4.3. In this
Section, we now describe the experiments we run using the comparable harnesses
with the GVT-g configuration against the ig15 graphics driver as the target. We
then perform a quantitative analysis of the coverage achieved over time for the two
fuzzers. This analysis will give us insights for the above research questions.

This section is structured as follows: In Section 5.2.1 we describe the
experiments that were executed. In Section 5.2.2 we inform the reader about the
requirements for the validity of the results and comparison. In Section 5.2.3 we
present the results and discuss the inferences. In Section 5.2.4 we present two
case studies that were carried out to get a closer look into the feedback
mechanisms of both the fuzzers.

5.2.1 Experiments

All the experiments with both the fuzzers are performed on the same machine to
account for any possible system variations. The machine used is as described in
Section 4.1.0.1. The harnesses that we use for Syzkaller and kAFL are described
in Section 4.3.3 and 4.3.2.1 respectively. As concluded in Section 5.1, we are
able to run GVT-g configurations on both the fuzzers. Therefore, we use GVT-g
configuration for maximum comparability.

We first test both the fuzzing setups for one run of 24 hours and 12 hours each.
We observe no change in the coverage after approximately 4 hours mark for both
Syzkaller and kAFL. Therefore, we decide to run each of the fuzzer trial for 6
hours only. A total of 4 trials per fuzzer are measured. 3 different seed files with
manually generated random input data are provided to kAFL including a seed
file with null bytes. All the trials are run with root access to the device file. Both
the fuzzing setups are started with only one guest machine due to Intel GVT-g
configuration as explained in Section 4.2.1.1 and Section 4.2.2.1.
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5.2.2  Requirements

The coverage collection method for Syzkaller, KCOV, is specific to Linux and
cannot be applied to any closed-source target. Therefore, we would like to note
that the comparison in this thesis would be fair if considered only for the open-
source target ig15 driver for the Linux Graphics Stack.

5.2.3 Results and Discussion

In this section we present and discuss the results from the experiments. In each
figure presented, the solid line represents the average number of edges found
every 5 seconds over the course of 4 fuzz trials. The average values are rounded
off. The other data lines are the original results observed from each trial.

It is to be noted that all the values in this section are reported according to the
results reported on the user-interfaces of both the fuzzers.

5.2.3.1 Coverage Over Time

The results presented in Figures 5.6 and 5.7 for KAFL, represent the cumulative
number of edges covered (on the Y axis) over logarithmic time and linear time
(on the X axis) respectively. Figures 5.8 and 5.9 for Syzkaller, also represent the
cumulative number of edges covered (on the Y axis) over logarithmic time and
linear time (on the X axis). In Figure 5.10 we map the kAFL and Syzkaller average
number of edges covered over logarithmic time for better visualization.
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Figure 5.6: KAFL Edges Found Over Time (Logarithmic Scale)
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Figure 5.7: KAFL Edges Found Over Time
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Figure 5.8: Syzkaller Edges Found Over Time (Logarithmic Scale)
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Figure 5.9: Syzkaller Edges Found Over Time
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Figure 5.10: Syzkaller vs kAFL Edges Found Over Time

We now state our observations from these graphs as follows

1. Observation 1: We observe from the figures that considering only one run
can lead to wrong conclusion. If we consider Figure 5.6, the lightest colored
data plot reaches close to the total edges covered quickly than other two
trials. If we consider the darkest colored data plot in the same figure, it can
lead us to incorrectly believe that KAFL took way longer than Syzkaller to
reach the total edges covered. Also, if we consider Figure 5.8, we see that
the darkest data plot took a significant amount to time to jump closer to
the total number of edges covered. This plot would have led us to conclude
that Syzkaller has a slower increase in coverage.

Observation 2: We compare the number of edges found. We see that the
number of edges found in all the trials for both the fuzzers are similar. For
Syzkaller, the average topped at 1160 and for kAFL it topped at 1229.

Observation 3: We observe in the linear scale plots of Syzkaller and kAFL
that coverage stops growing after a certain time. For kKAFL we observe that
the coverage does not increase on an average after approximately 3 hours
and for Syzkaller the coverage does not increase after approximately 3.5
hours.

Observation 4: We display the logarithmic scale because the linear scale
does not give us any information about the first 20 minutes or so of the
fuzzing campaign. We see that there was no interesting activity upto a
minute after the start of the fuzzing campaigns. In Figure 5.10, we see
that kAFL is able to find the first edge faster than Syzkaller. But Syzkaller
attains a higher coverage quickly up until 20 minutes while kAFL is rising
slowly and steadily. After this point, KAFL looks faster in achieving higher
coverage.

Observation 5: The number of trials we carried out for both fuzzers are
not enough to carry out a statistical analysis. But we can still infer certain
things by looking at the averages of the trials in Figure 5.10. First, we can
see that the variance between the edges found over time between Syzkaller
and kAFL is high. This is because both fuzzers can take completely different
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paths and some of these can take a longer time to process, for example,
loops.

5.2.3.2 Coverage Over Executions

The results presented in Figures 5.11 and Figure 5.12 represent the cumulative
number of edges covered (on the Y axis) over the number of executions (on the
X axis) for KAFL and Syzkaller respectively. In Figure 5.10 we map the kAFL
and Syzkaller average number of edges covered over logarithmic time for better
visualizations.

Observation 6: We can see that the number of executions per second for kAFL
were significantly higher than Syzkaller. This is potentially due to the faster
performance of the snapshot reload after every input.

Observation 7: We observe that even with lower number of executions Syzkaller
is able to get almost the similar number of coverage achieved as kAFL.
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Figure 5.11: KAFL Edges Found Over Executions (Logarithmic Scale)
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Figure 5.12: Syzkaller Edges Found Over Executions (Logarithmic Scale)
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Figure 5.13: Syzkaller vs kAFL Edges Found Over Executions

5.2.4 Comparing Coverages

It is to be noted that the coverage results from both the fuzzers are not completely
comparable when retrieved from the user-interface. Firstly, Syzkaller coverage

includes edges covered with the openat ioctl whereas kAFL coverage does not.

Secondly, it differs due to the difference in the nature of feedback mechanisms
used. The feedback mechanisms of both the fuzzers deploy different kinds of
transformation and optimization techniques. As a result, coverage received may
poorly map to the source code. For example, depending on the C compiler
and kernel build options used to compile the target kernel for Syzkaller, data
structures can contain different alignment of structures or functions can be
included in different ways (inline or not). While anaylzing Syzkaller coverage, it
is not uncommon to see a covered edge after a non-covered edge or you may not
see an edge where you expected one. Even then, assessing the coverage can be
useful and gives us an idea of how the fuzzing processes are working for both
the fuzzers. We see that even with a significantly lower number of executions per
second, Syzkaller is able to get similar number of edges as kAFL. It also reaches
close to the maximum coverage faster than kAFL in all the trials.

Since the results are not completely comparable, we decided to manually
investigate the coverage achieved by both the fuzzers to understand the difference
in the fuzzing results. We used the coverage analysis tools provided by each
fuzzer. We now discuss some significant findings via these methods in the form
of a case study.

Case Study

Syzkaller provides a final list of edges that every individual ioctl covered. We
are able to extract the coverage per ioctl for 1915_GEM_EXECBUFFER2_IOCTL and
1915_QUERY_IOCTL. The average number of edges covered by Syzkaller across 4
trials is 344. We are able to map the kafl coverage to source code via a script
kafl_cov.py provided by kAFL. We are able to filter the coverage of only the ig15
module from this mapping. The average number of edges discovered across
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all the 4 trials is 2191. This number is significantly different from the number
reported by the KAFL user-interface. We decide to discard this number and use
the Ghidra plugin provided by kAFL to manually analyze the coverage for further
investigation.

We now compare the coverage information received by the Syzkaller web
interface and the Ghidra plugin. For Syzkaller, we are able to see the edges that
are instrumented in the source code. We investigate one of the interesting files,
i915_gem_execbuffer.c which contains the execbuffer2 ioctl that we fuzzed. We
find certain functions like reloc_cache_init in the file that are not instrumented
for Syzkaller. But this function has edges that are covered by kAFL in the edge
mappings to source code results. This is because Clang/LLVM uses optimization
techniques to not instrument redundant code and inline functions and Syzkaller
relies on this instrumentation to collect coverage.

But we can see that the source code of most major functions like
textitig15_gem_execbuffer2_ioctl, textitigi5_gem_do_execbuffer
textitigi5_gem_check_execbuffer is covered almost equally. This means apart
from functions that are not covered by Syzkaller instrumentation, we can
consider Syzkaller and kAFL coverage almost comparable.

5.3 DISCUSSION

In this Section, we answer the research questions defined in Section by using the
analyses from the above Sections as follows:

RQ1: Which of the two fuzzing tools, Syzkaller or kAFL, is better suited for
large-scale driver validation?

Syzkaller is a state-of-the-art fuzzer and is able to fuzz the ig15 driver on Linux.
It provides user-friendly interface to view the statistics and coverage. And the
harness requires moderate technical knowledge about the Syzkaller grammar
syz-lang and the driver interface. But Syzkaller comes with two major drawbacks
for large-scale driver validation: It needs a custom compiled target kernel and it
can currently only fuzz Unix-like OSes.

KkAFL is a fuzzer prototype that can achieve the similar coverage to Syzkaller
when fuzzing the i915 graphics driver but only if the user provides kAFL a clever
harness. KAFL has a good real-time GUI for statistics but to view the coverage
requires third party tools and knowledge of binary analysis. The major advantage
of KAFL for large-scale driver validation is that it provides an OS-agnostic fuzzing
solution which means it can also potentially fuzz the Windows graphics driver.

Both the fuzzers can be good options for large-scale driver validation depending
on the individual use case.

RQz: Which of the different fuzzing solutions explored is better suited for large-
scale driver validation?




5.3 DISCUSSION

After exploring the different fuzzing solutions, we find GVT-g to be a good
option to run a crash-tolerant fuzzing campaign on both the fuzzers as it can
potentially be upscaled to fuzz the ig15 driver in parallel using multiple guests in
the future. This will be a cost-effective solution for large-scale driver validation
as it reduces the additional hardware costs.

GVT-d and Isolated can be tested with Syzkaller’s syz-hub tool to fuzz multiple
machines at a time as a future work. But this will come with higher hardware
costs as each target machine needs its own GPU.

RQ3: To compensate for the lack of knowledge of the syscall structures in kAFL,
can we write a more clever harness and get similar coverage for the i915 graphics
driver?

We are able to create a clever harness that implements a similar input generation
logic for three ioctls as Syzkaller. But we run into a bug with this harness, as
discussed in Section 4.3.2.1. This leads us to modify our kAFL harness to fuzz two
ioctls. The only difference lies in fuzzing the openat ioctl which Syzkaller is able
to fuzz while the kAFL harness is not. By running the comparable harnesses, we
are able to get similar coverage in a similar time frame with both the fuzzers. But
due to differences in the harnesses and the feedback mechanisms of the fuzzers,
the coverage is not 100% comparable. Therefore, we manually investigate the
coverage using the tools provided by the fuzzers and find that they are almost
comparable. Therefore, we can conclude that our clever kAFL harness was able to
get similar coverage for the i915 driver as Syzkaller in the same time frame. Thus,
compensating for the initial lack of knowledge of the syscall structure in kAFL.

RQg4: Can we use kKAFL as an alternative to Syzkaller for graphics driver fuzzing?

From our qualitative analysis we know that kAFL is able to fuzz the ig15 driver
continuously with the GVT-g configuration. Our qualitative analysis tells us that
kAFL also performs very similar to Syzkaller regarding coverage achieved over
time with a clever kAFL harness. Therefore, it is safe to conclude that kAFL is a
good alternative to Syzkaller in graphics driver fuzzing if the user is willing to
put in the time and effort to create such a clever harness.

In case the user wants to fuzz the graphics driver on the Windows OS, kAFL
presents itself as a good alternative to Syzkaller that does not support Windows
fuzzing.
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CONCLUSION AND FUTURE WORK

In this thesis, we aim to find a fuzzing solution that can overcome the challenges
of fuzzing the ig15 driver such that it can be deployed for ig15 driver validation
at large-scale. We define our two major research contributions and research them
as follows:

L

IL.

What are the different options for fuzzing the i915 GFX driver for large-scale
driver validation?

For our solution, we choose Intel’s device virtualization configurations to
fuzz the ig15 driver with both Syzkaller and kAFL. We face system crashes
as expected while fuzzing the ig15 driver with all the configurations. We
overcome this challenge by resetting the GPU and reloading the ig15 driver
on the host system. We successfully setup Syzkaller with GVT-g and GVT-d
and kAFL with GVT-g. With the experiences made during the solution setup
and fuzzing of the ig15 driver with both the fuzzers, we present a qualitative
analysis of both the fuzzers and the fuzzing solutions for large-scale driver
validation.

Present a quantitative analysis of Syzkaller and kAFL with the Intel i915
GFX driver as the target.

We compare the performances of the fuzzers based on speed and coverage
achieved to investigate which fuzzer is more effective at fuzzing the ig15
driver. To make the fuzzing setups comparable, we create a clever kKAFL
harness that implements a structure aware harness and input generation
logic similar to Syzkaller. We fuzz the ig15 driver using both the fuzzers
with GVT-g configurations and we are able to get a similar number of
edges covered. But the coverage is not completely comparable due to
certain differences in harness implementation and the feedback
mechanisms used by the fuzzer. We investigate manually to understand the
results in detail. We present a case study where we explore the coverage
achieved manually. We find that the major functions of the fuzzed ioctls
were equally covered by both the fuzzers and hence, conclude that the
coverages can be considered comparable. This means that kAFL with a
clever harness can achieve comparable results to Syzkaller

Finally, we would like to conclude that both fuzzers have certain advantages
and certain disadvantages. Syzkaller is state-of-the-art fuzzer with many
user-friendly options and hence, can be a good option for fuzzing but
only works with Unix-like OSes. With kKAFL writing a clever harness and
maintaining it can be labor intensive. But if the user wants an OS-agnostic
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solution for large-scale driver validation as it can be cost-effective, KAFL is
a good alternative option.

Our comparison was limited on results by fuzzing only two ioctls for kKAFL
and three for Syzkaller. Therefore, the future work to write a kKAFL harness
for the entire ig15 driver interface can provide more findings. In the future,
Syzkaller and kAFL can be modified to accept different QEMU arguments
for each guest to setup parallelization for Intel GVT-g. Also, Syzkaller’s
syz-hub can be tested on all the configurations to parallelize the fuzzing
process to validate the graphics driver on multiple machines.



APPENDIX

A.1 INTEL GVT-G SETUP

The intent of this section is to document the setting up of the Intel iGPU
virtualization methods Intel GVT-g and Intel GVT-d on the host kernel. The
following steps were followed to enable Intel GVT-g.

A.1.0.1 Software Versions Tested

The following versions were tested for Setup. The results with these Linux
Kernels

a) 4.19.0

b) 5.4.0-59

c) 5.8.0-66

d) 5.11.6 (latest stable)
Qemu

a) 4.2.1

b) 5.0.0

A.1.0.2 Creating the virtual GPU

The first step is to create a virtual GPU (vGPU) on the host and then assign
it to the guest machine. The guest will see this vGPU as the real GPU and is
able to access it even if it does not have the particular device driver. This is
achieved by using PCle Passthrough. Following steps need to be followed
to create a vGPU:

a) Kernel Parameters: The following kernel parameters are required to
be enabled in /etc/default/grub. The grub file used has been added
to the appendix.

¢ JOMMU support can be enabled on the host OS by adding
intel_iommu=on to the kernel parameters

* Enable support for Intel GVT-g virtualization by adding
1915.enable_gvt=1 to the kernel parameters
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b)

<)

e For Genii+ hardware and since Linux 5.4, the GuC/HuC
tirmware has been enabled by default. This might lead to issues
on certain systems and can be disabled by adding
1915.enable_guc=0 to the kernel parameters.

* Some additional parameters can be used for debugging like
drm.debug=0x01 and drm.debug=0x02

Kernel Modules: The following kernel modules need to be loaded.
It is to be noted that depending on the version of Linux kernel these
modules might be present either as loadable modules or might be
compiled directly to the kernel. The loadable modules can be loaded
on boot by adding them to /etc/modules-load.d/modules.conf

¢ kvmgt: This module activates the Intel GVT-g for KVM.

¢ vfio_mdev: The VFIO driver framework provides many APIs that
can be used to expose direct access to the device from the user
space. This framework is also used for mediated devices, therefore
this can assist GVT-g which is based on mediated passthrough.
The generic operations exposed are:

i. Create and destroy a device
ii. Add or remove the device to the mediator driver
iii. Add or remove a device from the IOMMU group

The mediator driver discussed in section 3.3.4 is provided by the
module vfio-mdev.

¢ vfio_iommu_type1: This module provides a x86 IOMMU API for
Intel VT-d.

Reboot the system and check if the vGPU types are available. This
can be done by ensuring the folder mdev_supported_types has been
created. This folder should contain the different types of vGPU that
you can create. The types differ on the amount of VRAM they can
provide.

# 1s /sys/bus/pci/devices/0000:00:02.0 | grep
mdev_supported_types
mdev_supported_types

# 1s /sys/bus/pci/devices/0000:00:02.0/mdev_supported_types |
grep 1915
i915-GVTg_V5_4 // Video memory: <128MB, 512MB>, resolution: up
to 1920x1200
i915-GVTg_V5_8 // Video memory: <64MB, 384MB>, resolution: up to
1024x768
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d) The last step is to create the vGPU. First, a UUID is required that can
be generated using the command uuidgen. This UUID needs to be
assigned to a vGPU type using the following command:

# echo <UUID> > /sys/bus/pci/devices/000supported_types/i915-GVTg
_V5_4/create

If the previous command was successful, a folder with the UUID as
the folder name in the GPU’s /sys folder should have been created

e) To make the vGPU always available on boot, a systemd service can be
created as /etc/systemd/system/setup-gvt.service and the
following code can be used:

[Unit]
Description=Setup GVT

[Service]
Type=oneshot
ExecStart=/usr/bin/bash -c ’echo ef8e2751-94bf-4b71—9c1d
—432dca83agec” > /sys/bus/pci/devices/0000:00:02.0/
mdev_supported_types/i915-GVTg_V5_4/create’

[Install]
WantedBy=multi—user . target

A.1.0.3 Add vGPU to Guest

The following QEMU arguments need to be added to add the vGPU device
to the guest machine.

-vga none -device vfio-pci,sysfsdev=/sys/bus/pci/devices/0000:00:02.0/<
UUID>

To check if the addition has been successful, run 1spci on the guest machine
to see if your GPU is visible. Also, the GPU device files /dev/dri/card6
and /dev/dri/renderD128 should be available on the guest machine.
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A.2 KAFL HARNESS ALGORITHM

Algorithm 4 Harness Implementation

1: function MAIN
kAFL Handshake using KAFL_ACQUIRE and KAFL_RELEASE
while true do

fd < OPENAT()

payload < KAFL_GET_PAYLOAD()

KAFL_ACQUIRE()

RANDOMIZE_SYSCALLS(fd, payload)

KAFL_RELEASE()

9: function RANDOMIZE_SyscCALLS(fd, payload)

10 filedescriptors « [fd,-1]

11: repetitions < Get 2 numbers from the payload

12: if sum of repetitions = o then

13: CALL_I915_EXECBUFFER(fd, payload)

14: else

15: func_names < repetitions[0] x "0" + repetitions[1] x "e"
16: shuffle func_names according to the buffer

17: for all char in func_names do

18: fd_index < index for file descriptors from payload
19: fd’ < filedescriptors[fd_index]

20: if char = "0" then

21: CALL_I915_EXECBUFFER2(fd’, buffer)

22: else

23: CALL_1915_QUERY(fd’, buffer)

24: function cALL_1915_QUERY(fd, buffer)

25: query < input for DRM_IOCTL_Ig15_QUERY from payload data or constant value
26: Set special flags

27: ioctl(fd, DRM_IOCTL_Ig15_QUERY, query)

28: function CALL_I1915_EXECBUFFER2(fd, buffer)
29: query < input for DRM_IOCTL_Ig15_ GEM_EXECBUFFER2 from payload data or

constant value

30: ioctl(fd, DRM_IOCTL _Ig15_ GEM_EXECBUFFER2, query)
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